Skip to content

DataChain

The DataChain class creates a data chain, which is a sequence of data manipulation steps such as reading data from storages, running AI or LLM models or calling external services API to validate or enrich data. See DataChain for examples of how to create a chain.

C module-attribute

C = Column

Column

Column(
    text, type_=None, is_literal=False, _selectable=None
)

Bases: ColumnClause

Source code in datachain/query/schema.py
def __init__(self, text, type_=None, is_literal=False, _selectable=None):
    """Dataset column."""
    self.name = ColumnMeta.to_db_name(text)
    super().__init__(
        self.name, type_=type_, is_literal=is_literal, _selectable=_selectable
    )

glob

glob(glob_str)

Search for matches using glob pattern matching.

Source code in datachain/query/schema.py
def glob(self, glob_str):
    """Search for matches using glob pattern matching."""
    return self.op("GLOB")(glob_str)

regexp

regexp(regexp_str)

Search for matches using regexp pattern matching.

Source code in datachain/query/schema.py
def regexp(self, regexp_str):
    """Search for matches using regexp pattern matching."""
    return self.op("REGEXP")(regexp_str)

DataChain

DataChain(
    query: DatasetQuery,
    settings: Settings,
    signal_schema: SignalSchema,
    setup: Optional[dict] = None,
    _sys: bool = False,
)

DataChain - a data structure for batch data processing and evaluation.

It represents a sequence of data manipulation steps such as reading data from storages, running AI or LLM models or calling external services API to validate or enrich data.

Data in DataChain is presented as Python classes with arbitrary set of fields, including nested classes. The data classes have to inherit from DataModel class. The supported set of field types include: majority of the type supported by the underlyind library Pydantic.

See Also

DataChain.from_storage("s3://my-bucket/my-dir/") - reading unstructured data files from storages such as S3, gs or Azure ADLS.

DataChain.save("name") - saving to a dataset.

DataChain.from_dataset("name") - reading from a dataset.

DataChain.from_values(fib=[1, 2, 3, 5, 8]) - generating from values.

DataChain.from_pandas(pd.DataFrame(...)) - generating from pandas.

DataChain.from_json("file.json") - generating from json.

DataChain.from_csv("file.csv") - generating from csv.

DataChain.from_parquet("file.parquet") - generating from parquet.

Example
import os

from mistralai.client import MistralClient
from mistralai.models.chat_completion import ChatMessage

from datachain.dc import DataChain, Column

PROMPT = (
    "Was this bot dialog successful? "
    "Describe the 'result' as 'Yes' or 'No' in a short JSON"
)

model = "mistral-large-latest"
api_key = os.environ["MISTRAL_API_KEY"]

chain = (
    DataChain.from_storage("gs://datachain-demo/chatbot-KiT/")
    .limit(5)
    .settings(cache=True, parallel=5)
    .map(
        mistral_response=lambda file: MistralClient(api_key=api_key)
        .chat(
            model=model,
            response_format={"type": "json_object"},
            messages=[
                ChatMessage(role="user", content=f"{PROMPT}: {file.read()}")
            ],
        )
        .choices[0]
        .message.content,
    )
    .save()
)

try:
    print(chain.select("mistral_response").results())
except Exception as e:
    print(f"do you have the right Mistral API key? {e}")
Source code in datachain/lib/dc.py
def __init__(
    self,
    query: DatasetQuery,
    settings: Settings,
    signal_schema: SignalSchema,
    setup: Optional[dict] = None,
    _sys: bool = False,
) -> None:
    """Don't instantiate this directly, use one of the from_XXX constructors."""
    self._query = query
    self._settings = settings
    self.signals_schema = signal_schema
    self._setup: dict = setup or {}
    self._sys = _sys

dataset property

dataset: Optional[DatasetRecord]

Underlying dataset, if there is one.

name property

name: Optional[str]

Name of the underlying dataset, if there is one.

schema property

schema: dict[str, DataType]

Get schema of the chain.

session property

session: Session

Session of the chain.

version property

version: Optional[int]

Version of the underlying dataset, if there is one.

__or__

__or__(other: Self) -> Self

Return self.union(other).

Source code in datachain/lib/dc.py
def __or__(self, other: "Self") -> "Self":
    """Return `self.union(other)`."""
    return self.union(other)

agg

agg(
    func: Optional[Callable] = None,
    partition_by: Optional[PartitionByType] = None,
    params: Union[None, str, Sequence[str]] = None,
    output: OutputType = None,
    **signal_map
) -> Self

Aggregate rows using partition_by statement and apply a function to the groups of aggregated rows. The function needs to return new objects for each group of the new rows. It returns a chain itself with new signals.

Input-output relationship: N:M

This method bears similarity to gen() and map(), employing a comparable set of parameters, yet differs in two crucial aspects: 1. The partition_by parameter: This specifies the column name or a list of column names that determine the grouping criteria for aggregation. 2. Group-based UDF function input: Instead of individual rows, the function receives a list all rows within each group defined by partition_by.

Examples:

chain = chain.agg(
    total=lambda category, amount: [sum(amount)],
    output=float,
    partition_by="category",
)
chain.save("new_dataset")

An alternative syntax, when you need to specify a more complex function:

# It automatically resolves which columns to pass to the function
# by looking at the function signature.
def agg_sum(
    file: list[File], amount: list[float]
) -> Iterator[tuple[File, float]]:
    yield file[0], sum(amount)

chain = chain.agg(
    agg_sum,
    output={"file": File, "total": float},
    # Alternative syntax is to use `C` (short for Column) to specify
    # a column name or a nested column, e.g. C("file.path").
    partition_by=C("category"),
)
chain.save("new_dataset")
Source code in datachain/lib/dc.py
def agg(
    self,
    func: Optional[Callable] = None,
    partition_by: Optional[PartitionByType] = None,
    params: Union[None, str, Sequence[str]] = None,
    output: OutputType = None,
    **signal_map,
) -> "Self":
    """Aggregate rows using `partition_by` statement and apply a function to the
    groups of aggregated rows. The function needs to return new objects for each
    group of the new rows. It returns a chain itself with new signals.

    Input-output relationship: N:M

    This method bears similarity to `gen()` and `map()`, employing a comparable set
    of parameters, yet differs in two crucial aspects:
    1. The `partition_by` parameter: This specifies the column name or a list of
       column names that determine the grouping criteria for aggregation.
    2. Group-based UDF function input: Instead of individual rows, the function
       receives a list all rows within each group defined by `partition_by`.

    Examples:
        ```py
        chain = chain.agg(
            total=lambda category, amount: [sum(amount)],
            output=float,
            partition_by="category",
        )
        chain.save("new_dataset")
        ```

        An alternative syntax, when you need to specify a more complex function:

        ```py
        # It automatically resolves which columns to pass to the function
        # by looking at the function signature.
        def agg_sum(
            file: list[File], amount: list[float]
        ) -> Iterator[tuple[File, float]]:
            yield file[0], sum(amount)

        chain = chain.agg(
            agg_sum,
            output={"file": File, "total": float},
            # Alternative syntax is to use `C` (short for Column) to specify
            # a column name or a nested column, e.g. C("file.path").
            partition_by=C("category"),
        )
        chain.save("new_dataset")
        ```
    """
    udf_obj = self._udf_to_obj(Aggregator, func, params, output, signal_map)
    return self._evolve(
        query=self._query.generate(
            udf_obj.to_udf_wrapper(),
            partition_by=partition_by,
            **self._settings.to_dict(),
        ),
        signal_schema=udf_obj.output,
    )

apply

apply(func, *args, **kwargs)

Apply any function to the chain.

Useful for reusing in a chain of operations.

Example
def parse_stem(chain):
    return chain.map(
        lambda file: file.get_file_stem()
        output={"stem": str}
    )

chain = (
    DataChain.from_storage("s3://my-bucket")
    .apply(parse_stem)
    .filter(C("stem").glob("*cat*"))
)
Source code in datachain/lib/dc.py
def apply(self, func, *args, **kwargs):
    """Apply any function to the chain.

    Useful for reusing in a chain of operations.

    Example:
        ```py
        def parse_stem(chain):
            return chain.map(
                lambda file: file.get_file_stem()
                output={"stem": str}
            )

        chain = (
            DataChain.from_storage("s3://my-bucket")
            .apply(parse_stem)
            .filter(C("stem").glob("*cat*"))
        )
        ```
    """
    return func(self, *args, **kwargs)

avg

avg(fr: DataType)

Compute the average of a column.

Source code in datachain/lib/dc.py
def avg(self, fr: DataType):  # type: ignore[override]
    """Compute the average of a column."""
    return self._extend_to_data_model("avg", fr)

batch_map

batch_map(
    func: Optional[Callable] = None,
    params: Union[None, str, Sequence[str]] = None,
    output: OutputType = None,
    batch: int = 1000,
    **signal_map
) -> Self

This is a batch version of map().

Input-output relationship: N:N

It accepts the same parameters plus an additional parameter:

batch : Size of each batch passed to `func`. Defaults to 1000.
Example
chain = chain.batch_map(
    sqrt=lambda size: np.sqrt(size),
    output=float
)
chain.save("new_dataset")
Source code in datachain/lib/dc.py
def batch_map(
    self,
    func: Optional[Callable] = None,
    params: Union[None, str, Sequence[str]] = None,
    output: OutputType = None,
    batch: int = 1000,
    **signal_map,
) -> "Self":
    """This is a batch version of `map()`.

    Input-output relationship: N:N

    It accepts the same parameters plus an
    additional parameter:

        batch : Size of each batch passed to `func`. Defaults to 1000.

    Example:
        ```py
        chain = chain.batch_map(
            sqrt=lambda size: np.sqrt(size),
            output=float
        )
        chain.save("new_dataset")
        ```
    """
    udf_obj = self._udf_to_obj(BatchMapper, func, params, output, signal_map)
    return self._evolve(
        query=self._query.add_signals(
            udf_obj.to_udf_wrapper(batch),
            **self._settings.to_dict(),
        ),
        signal_schema=self.signals_schema | udf_obj.output,
    )

c

c(column: Union[str, Column]) -> Column

Returns Column instance attached to the current chain.

Source code in datachain/lib/dc.py
def c(self, column: Union[str, Column]) -> Column:
    """Returns Column instance attached to the current chain."""
    c = self.column(column) if isinstance(column, str) else self.column(column.name)
    c.table = self._query.table
    return c

chunk

chunk(index: int, total: int) -> Self

Split a chain into smaller chunks for e.g. parallelization.

Example
chain = DataChain.from_storage(...)
chunk_1 = query._chunk(0, 2)
chunk_2 = query._chunk(1, 2)
Note

Bear in mind that index is 0-indexed but total isn't. Use 0/3, 1/3 and 2/3, not 1/3, 2/3 and 3/3.

Source code in datachain/lib/dc.py
def chunk(self, index: int, total: int) -> "Self":
    """Split a chain into smaller chunks for e.g. parallelization.

    Example:
        ```py
        chain = DataChain.from_storage(...)
        chunk_1 = query._chunk(0, 2)
        chunk_2 = query._chunk(1, 2)
        ```

    Note:
        Bear in mind that `index` is 0-indexed but `total` isn't.
        Use 0/3, 1/3 and 2/3, not 1/3, 2/3 and 3/3.
    """
    return self._evolve(query=self._query.chunk(index, total))

clone

clone() -> Self

Make a copy of the chain in a new table.

Source code in datachain/lib/dc.py
def clone(self) -> "Self":
    """Make a copy of the chain in a new table."""
    return self._evolve(query=self._query.clone(new_table=True))

collect

collect() -> Iterator[tuple[DataValue, ...]]
collect(col: str) -> Iterator[DataValue]
collect(*cols: str) -> Iterator[tuple[DataValue, ...]]
collect(
    *cols: str,
) -> Iterator[Union[DataValue, tuple[DataValue, ...]]]

Yields rows of values, optionally limited to the specified columns.

Parameters:

  • *cols (str, default: () ) –

    Limit to the specified columns. By default, all columns are selected.

Yields:

  • DataType

    Yields a single item if a column is selected.

  • tuple[DataType, ...]

    Yields a tuple of items if multiple columns are selected.

Example

Iterating over all rows:

for row in dc.collect():
    print(row)

Iterating over all rows with selected columns:

for name, size in dc.collect("file.name", "file.size"):
    print(name, size)

Iterating over a single column:

for file in dc.collect("file.name"):
    print(file)

Source code in datachain/lib/dc.py
def collect(self, *cols: str) -> Iterator[Union[DataValue, tuple[DataValue, ...]]]:  # type: ignore[overload-overlap,misc]
    """Yields rows of values, optionally limited to the specified columns.

    Args:
        *cols: Limit to the specified columns. By default, all columns are selected.

    Yields:
        (DataType): Yields a single item if a column is selected.
        (tuple[DataType, ...]): Yields a tuple of items if multiple columns are
            selected.

    Example:
        Iterating over all rows:
        ```py
        for row in dc.collect():
            print(row)
        ```

        Iterating over all rows with selected columns:
        ```py
        for name, size in dc.collect("file.name", "file.size"):
            print(name, size)
        ```

        Iterating over a single column:
        ```py
        for file in dc.collect("file.name"):
            print(file)
        ```
    """
    chain = self.select(*cols) if cols else self
    signals_schema = chain._effective_signals_schema
    db_signals = signals_schema.db_signals()
    with self._query.ordered_select(*db_signals).as_iterable() as rows:
        for row in rows:
            ret = signals_schema.row_to_features(
                row, catalog=chain.session.catalog, cache=chain._settings.cache
            )
            yield ret[0] if len(cols) == 1 else tuple(ret)

collect_flatten

collect_flatten() -> Iterator[tuple[Any, ...]]
collect_flatten(
    *,
    row_factory: Callable[[list[str], tuple[Any, ...]], _T]
) -> Iterator[_T]
collect_flatten(*, row_factory=None)

Yields flattened rows of values as a tuple.

Parameters:

  • row_factory

    A callable to convert row to a custom format. It should accept two arguments: a list of column names and a tuple of row values.

Source code in datachain/lib/dc.py
def collect_flatten(self, *, row_factory=None):
    """Yields flattened rows of values as a tuple.

    Args:
        row_factory : A callable to convert row to a custom format.
                      It should accept two arguments: a list of column names and
                      a tuple of row values.
    """
    db_signals = self._effective_signals_schema.db_signals()
    with self._query.ordered_select(*db_signals).as_iterable() as rows:
        if row_factory:
            rows = (row_factory(db_signals, r) for r in rows)
        yield from rows

column

column(name: str) -> Column

Returns Column instance with a type if name is found in current schema, otherwise raises an exception.

Source code in datachain/lib/dc.py
def column(self, name: str) -> Column:
    """Returns Column instance with a type if name is found in current schema,
    otherwise raises an exception.
    """
    if "." in name:
        name_path = name.split(".")
    elif DEFAULT_DELIMITER in name:
        name_path = name.split(DEFAULT_DELIMITER)
    else:
        name_path = [name]
    for path, type_, _, _ in self.signals_schema.get_flat_tree():
        if path == name_path:
            return Column(name, python_to_sql(type_))

    raise ValueError(f"Column with name {name} not found in the schema")

compare

compare(
    other: DataChain,
    on: Union[str, Sequence[str]],
    right_on: Optional[Union[str, Sequence[str]]] = None,
    compare: Optional[Union[str, Sequence[str]]] = None,
    right_compare: Optional[
        Union[str, Sequence[str]]
    ] = None,
    added: bool = True,
    deleted: bool = True,
    modified: bool = True,
    same: bool = False,
    status_col: Optional[str] = None,
) -> DataChain

Comparing two chains by identifying rows that are added, deleted, modified or same. Result is the new chain that has additional column with possible values: A, D, M, U representing added, deleted, modified and same rows respectively. Note that if only one "status" is asked, by setting proper flags, this additional column is not created as it would have only one value for all rows. Beside additional diff column, new chain has schema of the chain on which method was called.

Parameters:

  • other (DataChain) –

    Chain to calculate diff from.

  • on (Union[str, Sequence[str]]) –

    Column or list of columns to match on. If both chains have the same columns then this column is enough for the match. Otherwise, right_on parameter has to specify the columns for the other chain. This value is used to find corresponding row in other dataset. If not found there, row is considered as added (or removed if vice versa), and if found then row can be either modified or same.

  • right_on (Optional[Union[str, Sequence[str]]], default: None ) –

    Optional column or list of columns for the other to match.

  • compare (Optional[Union[str, Sequence[str]]], default: None ) –

    Column or list of columns to compare on. If both chains have the same columns then this column is enough for the compare. Otherwise, right_compare parameter has to specify the columns for the other chain. This value is used to see if row is modified or same. If not set, all columns will be used for comparison

  • right_compare (Optional[Union[str, Sequence[str]]], default: None ) –

    Optional column or list of columns for the other to compare to.

  • added (bool, default: True ) –

    Whether to return added rows in resulting chain.

  • deleted (bool, default: True ) –

    Whether to return deleted rows in resulting chain.

  • modified (bool, default: True ) –

    Whether to return modified rows in resulting chain.

  • same (bool, default: False ) –

    Whether to return unchanged rows in resulting chain.

  • status_col (str, default: None ) –

    Name of the new column that is created in resulting chain representing diff status.

Example
res = persons.compare(
    new_persons,
    on=["id"],
    right_on=["other_id"],
    compare=["name"],
    added=True,
    deleted=True,
    modified=True,
    same=True,
    status_col="diff"
)
Source code in datachain/lib/dc.py
def compare(
    self,
    other: "DataChain",
    on: Union[str, Sequence[str]],
    right_on: Optional[Union[str, Sequence[str]]] = None,
    compare: Optional[Union[str, Sequence[str]]] = None,
    right_compare: Optional[Union[str, Sequence[str]]] = None,
    added: bool = True,
    deleted: bool = True,
    modified: bool = True,
    same: bool = False,
    status_col: Optional[str] = None,
) -> "DataChain":
    """Comparing two chains by identifying rows that are added, deleted, modified
    or same. Result is the new chain that has additional column with possible
    values: `A`, `D`, `M`, `U` representing added, deleted, modified and same
    rows respectively. Note that if only one "status" is asked, by setting proper
    flags, this additional column is not created as it would have only one value
    for all rows. Beside additional diff column, new chain has schema of the chain
    on which method was called.

    Parameters:
        other: Chain to calculate diff from.
        on: Column or list of columns to match on. If both chains have the
            same columns then this column is enough for the match. Otherwise,
            `right_on` parameter has to specify the columns for the other chain.
            This value is used to find corresponding row in other dataset. If not
            found there, row is considered as added (or removed if vice versa), and
            if found then row can be either modified or same.
        right_on: Optional column or list of columns
            for the `other` to match.
        compare: Column or list of columns to compare on. If both chains have
            the same columns then this column is enough for the compare. Otherwise,
            `right_compare` parameter has to specify the columns for the other
            chain. This value is used to see if row is modified or same. If
            not set, all columns will be used for comparison
        right_compare: Optional column or list of columns
                for the `other` to compare to.
        added (bool): Whether to return added rows in resulting chain.
        deleted (bool): Whether to return deleted rows in resulting chain.
        modified (bool): Whether to return modified rows in resulting chain.
        same (bool): Whether to return unchanged rows in resulting chain.
        status_col (str): Name of the new column that is created in resulting chain
            representing diff status.

    Example:
        ```py
        res = persons.compare(
            new_persons,
            on=["id"],
            right_on=["other_id"],
            compare=["name"],
            added=True,
            deleted=True,
            modified=True,
            same=True,
            status_col="diff"
        )
        ```
    """
    from datachain.diff import _compare

    return _compare(
        self,
        other,
        on,
        right_on=right_on,
        compare=compare,
        right_compare=right_compare,
        added=added,
        deleted=deleted,
        modified=modified,
        same=same,
        status_col=status_col,
    )

count

count() -> int

Return the number of rows in the chain.

Source code in datachain/lib/dc.py
def count(self) -> int:
    """Return the number of rows in the chain."""
    return self._query.count()

datasets classmethod

datasets(
    session: Optional[Session] = None,
    settings: Optional[dict] = None,
    in_memory: bool = False,
    object_name: str = "dataset",
    include_listing: bool = False,
) -> DataChain

Generate chain with list of registered datasets.

Example
from datachain import DataChain

chain = DataChain.datasets()
for ds in chain.collect("dataset"):
    print(f"{ds.name}@v{ds.version}")
Source code in datachain/lib/dc.py
@classmethod
def datasets(
    cls,
    session: Optional[Session] = None,
    settings: Optional[dict] = None,
    in_memory: bool = False,
    object_name: str = "dataset",
    include_listing: bool = False,
) -> "DataChain":
    """Generate chain with list of registered datasets.

    Example:
        ```py
        from datachain import DataChain

        chain = DataChain.datasets()
        for ds in chain.collect("dataset"):
            print(f"{ds.name}@v{ds.version}")
        ```
    """
    session = Session.get(session, in_memory=in_memory)
    catalog = session.catalog

    datasets = [
        DatasetInfo.from_models(d, v, j)
        for d, v, j in catalog.list_datasets_versions(
            include_listing=include_listing
        )
    ]

    return cls.from_values(
        session=session,
        settings=settings,
        in_memory=in_memory,
        output={object_name: DatasetInfo},
        **{object_name: datasets},  # type: ignore[arg-type]
    )

diff

diff(
    other: DataChain,
    on: str = "file",
    right_on: Optional[str] = None,
    added: bool = True,
    modified: bool = True,
    deleted: bool = False,
    same: bool = False,
    status_col: Optional[str] = None,
) -> DataChain

Similar to .compare(), which is more generic method to calculate difference between two chains. Unlike .compare(), this method works only on those chains that have File object, or it's derivatives, in it. File source and path are used for matching, and file version and etag for comparing, while in .compare() user needs to provide arbitrary columns for matching and comparing.

Parameters:

  • other (DataChain) –

    Chain to calculate diff from.

  • on (str, default: 'file' ) –

    File signal to match on. If both chains have the same file signal then this column is enough for the match. Otherwise, right_on parameter has to specify the file signal for the other chain. This value is used to find corresponding row in other dataset. If not found there, row is considered as added (or removed if vice versa), and if found then row can be either modified or same.

  • right_on (Optional[str], default: None ) –

    Optional file signal for the other to match.

  • added (bool, default: True ) –

    Whether to return added rows in resulting chain.

  • deleted (bool, default: False ) –

    Whether to return deleted rows in resulting chain.

  • modified (bool, default: True ) –

    Whether to return modified rows in resulting chain.

  • same (bool, default: False ) –

    Whether to return unchanged rows in resulting chain.

  • status_col (str, default: None ) –

    Optional name of the new column that is created in resulting chain representing diff status.

Example
diff = images.diff(
    new_images,
    on="file",
    right_on="other_file",
    added=True,
    deleted=True,
    modified=True,
    same=True,
    status_col="diff"
)
Source code in datachain/lib/dc.py
def diff(
    self,
    other: "DataChain",
    on: str = "file",
    right_on: Optional[str] = None,
    added: bool = True,
    modified: bool = True,
    deleted: bool = False,
    same: bool = False,
    status_col: Optional[str] = None,
) -> "DataChain":
    """Similar to `.compare()`, which is more generic method to calculate difference
    between two chains. Unlike `.compare()`, this method works only on those chains
    that have `File` object, or it's derivatives, in it. File `source` and `path`
    are used for matching, and file `version` and `etag` for comparing, while in
    `.compare()` user needs to provide arbitrary columns for matching and comparing.

    Parameters:
        other: Chain to calculate diff from.
        on: File signal to match on. If both chains have the
            same file signal then this column is enough for the match. Otherwise,
            `right_on` parameter has to specify the file signal for the other chain.
            This value is used to find corresponding row in other dataset. If not
            found there, row is considered as added (or removed if vice versa), and
            if found then row can be either modified or same.
        right_on: Optional file signal for the `other` to match.
        added (bool): Whether to return added rows in resulting chain.
        deleted (bool): Whether to return deleted rows in resulting chain.
        modified (bool): Whether to return modified rows in resulting chain.
        same (bool): Whether to return unchanged rows in resulting chain.
        status_col (str): Optional name of the new column that is created in
            resulting chain representing diff status.

    Example:
        ```py
        diff = images.diff(
            new_images,
            on="file",
            right_on="other_file",
            added=True,
            deleted=True,
            modified=True,
            same=True,
            status_col="diff"
        )
        ```
    """
    on_file_signals = ["source", "path"]
    compare_file_signals = ["version", "etag"]

    def get_file_signals(file: str, signals):
        return [f"{file}.{c}" for c in signals]

    right_on = right_on or on

    on_cols = get_file_signals(on, on_file_signals)
    right_on_cols = get_file_signals(right_on, on_file_signals)
    compare_cols = get_file_signals(on, compare_file_signals)
    right_compare_cols = get_file_signals(right_on, compare_file_signals)

    return self.compare(
        other,
        on_cols,
        right_on=right_on_cols,
        compare=compare_cols,
        right_compare=right_compare_cols,
        added=added,
        deleted=deleted,
        modified=modified,
        same=same,
        status_col=status_col,
    )

distinct

distinct(arg: str, *args: str) -> Self

Removes duplicate rows based on uniqueness of some input column(s) i.e if rows are found with the same value of input column(s), only one row is left in the result set.

Example
dc.distinct("file.parent", "file.name")
Source code in datachain/lib/dc.py
def distinct(self, arg: str, *args: str) -> "Self":  # type: ignore[override]
    """Removes duplicate rows based on uniqueness of some input column(s)
    i.e if rows are found with the same value of input column(s), only one
    row is left in the result set.

    Example:
        ```py
        dc.distinct("file.parent", "file.name")
        ```
    """
    return self._evolve(
        query=self._query.distinct(
            *self.signals_schema.resolve(arg, *args).db_signals()
        )
    )

exec

exec() -> Self

Execute the chain.

Source code in datachain/lib/dc.py
def exec(self) -> "Self":
    """Execute the chain."""
    return self._evolve(query=self._query.exec())

explode

explode(
    col: str,
    model_name: Optional[str] = None,
    object_name: Optional[str] = None,
    schema_sample_size: int = 1,
) -> DataChain

Explodes a column containing JSON objects (dict or str DataChain type) into individual columns based on the schema of the JSON. Schema is inferred from the first row of the column.

Parameters:

  • col (str) –

    the name of the column containing JSON to be exploded.

  • model_name (Optional[str], default: None ) –

    optional generated model name. By default generates the name automatically.

  • object_name (Optional[str], default: None ) –

    optional generated object column name. By default generates the name automatically.

  • schema_sample_size (int, default: 1 ) –

    the number of rows to use for inferring the schema of the JSON (in case some fields are optional and it's not enough to analyze a single row).

Returns:

  • DataChain ( DataChain ) –

    A new DataChain instance with the new set of columns.

Source code in datachain/lib/dc.py
def explode(
    self,
    col: str,
    model_name: Optional[str] = None,
    object_name: Optional[str] = None,
    schema_sample_size: int = 1,
) -> "DataChain":
    """Explodes a column containing JSON objects (dict or str DataChain type) into
       individual columns based on the schema of the JSON. Schema is inferred from
       the first row of the column.

    Args:
        col: the name of the column containing JSON to be exploded.
        model_name: optional generated model name.  By default generates the name
            automatically.
        object_name: optional generated object column name. By default generates the
            name automatically.
        schema_sample_size: the number of rows to use for inferring the schema of
            the JSON (in case some fields are optional and it's not enough to
            analyze a single row).

    Returns:
        DataChain: A new DataChain instance with the new set of columns.
    """
    import json

    import pyarrow as pa

    from datachain.lib.arrow import schema_to_output

    json_values = list(self.limit(schema_sample_size).collect(col))
    json_dicts = [
        json.loads(json_value) if isinstance(json_value, str) else json_value
        for json_value in json_values
    ]

    if any(not isinstance(json_dict, dict) for json_dict in json_dicts):
        raise TypeError(f"Column {col} should be a string or dict type with JSON")

    schema = pa.Table.from_pylist(json_dicts).schema
    output, original_names = schema_to_output(schema, None)

    if not model_name:
        model_name = f"{col.title()}ExplodedModel"

    model = dict_to_data_model(model_name, output, original_names)

    def json_to_model(json_value: Union[str, dict]):
        json_dict = (
            json.loads(json_value) if isinstance(json_value, str) else json_value
        )
        return model.model_validate(json_dict)

    if not object_name:
        object_name = f"{col}_expl"

    return self.map(json_to_model, params=col, output={object_name: model})

export_files

export_files(
    output: str,
    signal: str = "file",
    placement: ExportPlacement = "fullpath",
    use_cache: bool = True,
    link_type: Literal["copy", "symlink"] = "copy",
) -> None

Export files from a specified signal to a directory.

Parameters:

  • output (str) –

    Path to the target directory for exporting files.

  • signal (str, default: 'file' ) –

    Name of the signal to export files from.

  • placement (ExportPlacement, default: 'fullpath' ) –

    The method to use for naming exported files. The possible values are: "filename", "etag", "fullpath", and "checksum".

  • use_cache (bool, default: True ) –

    If True, cache the files before exporting.

  • link_type (Literal['copy', 'symlink'], default: 'copy' ) –

    Method to use for exporting files. Falls back to 'copy' if symlinking fails.

Source code in datachain/lib/dc.py
def export_files(
    self,
    output: str,
    signal: str = "file",
    placement: FileExportPlacement = "fullpath",
    use_cache: bool = True,
    link_type: Literal["copy", "symlink"] = "copy",
) -> None:
    """Export files from a specified signal to a directory.

    Args:
        output: Path to the target directory for exporting files.
        signal: Name of the signal to export files from.
        placement: The method to use for naming exported files.
            The possible values are: "filename", "etag", "fullpath", and "checksum".
        use_cache: If `True`, cache the files before exporting.
        link_type: Method to use for exporting files.
            Falls back to `'copy'` if symlinking fails.
    """
    if placement == "filename" and (
        self._query.distinct(pathfunc.name(C(f"{signal}__path"))).count()
        != self._query.count()
    ):
        raise ValueError("Files with the same name found")

    for file in self.collect(signal):
        file.export(output, placement, use_cache, link_type=link_type)  # type: ignore[union-attr]

filter

filter(*args: Any) -> Self

Filter the chain according to conditions.

Example

Basic usage with built-in operators

dc.filter(C("width") < 200)

Using glob to match patterns

dc.filter(C("file.name").glob("*.jpg"))

Using datachain.func

from datachain.func import string
dc.filter(string.length(C("file.name")) > 5)

Combining filters with "or"

dc.filter(C("file.name").glob("cat*") | C("file.name").glob("dog*))

Combining filters with "and"

dc.filter(
    C("file.name").glob("*.jpg) &
    (string.length(C("file.name")) > 5)
)

Source code in datachain/lib/dc.py
def filter(self, *args: Any) -> "Self":
    """Filter the chain according to conditions.

    Example:
        Basic usage with built-in operators
        ```py
        dc.filter(C("width") < 200)
        ```

        Using glob to match patterns
        ```py
        dc.filter(C("file.name").glob("*.jpg"))
        ```

        Using `datachain.func`
        ```py
        from datachain.func import string
        dc.filter(string.length(C("file.name")) > 5)
        ```

        Combining filters with "or"
        ```py
        dc.filter(C("file.name").glob("cat*") | C("file.name").glob("dog*))
        ```

        Combining filters with "and"
        ```py
        dc.filter(
            C("file.name").glob("*.jpg) &
            (string.length(C("file.name")) > 5)
        )
        ```
    """
    return self._evolve(query=self._query.filter(*args))

from_csv classmethod

from_csv(
    path,
    delimiter: str = ",",
    header: bool = True,
    output: OutputType = None,
    object_name: str = "",
    model_name: str = "",
    source: bool = True,
    nrows=None,
    session: Optional[Session] = None,
    settings: Optional[dict] = None,
    column_types: Optional[
        dict[str, Union[str, DataType]]
    ] = None,
    **kwargs
) -> DataChain

Generate chain from csv files.

Parameters:

  • path

    Storage URI with directory. URI must start with storage prefix such as s3://, gs://, az:// or "file:///".

  • delimiter

    Character for delimiting columns.

  • header

    Whether the files include a header row.

  • output

    Dictionary or feature class defining column names and their corresponding types. List of column names is also accepted, in which case types will be inferred.

  • object_name

    Created object column name.

  • model_name

    Generated model name.

  • source

    Whether to include info about the source file.

  • nrows

    Optional row limit.

  • session

    Session to use for the chain.

  • settings

    Settings to use for the chain.

  • column_types

    Dictionary of column names and their corresponding types. It is passed to CSV reader and for each column specified type auto inference is disabled.

Example

Reading a csv file:

dc = DataChain.from_csv("s3://mybucket/file.csv")

Reading csv files from a directory as a combined dataset:

dc = DataChain.from_csv("s3://mybucket/dir")

Source code in datachain/lib/dc.py
@classmethod
def from_csv(
    cls,
    path,
    delimiter: str = ",",
    header: bool = True,
    output: OutputType = None,
    object_name: str = "",
    model_name: str = "",
    source: bool = True,
    nrows=None,
    session: Optional[Session] = None,
    settings: Optional[dict] = None,
    column_types: Optional[dict[str, "Union[str, ArrowDataType]"]] = None,
    **kwargs,
) -> "DataChain":
    """Generate chain from csv files.

    Parameters:
        path : Storage URI with directory. URI must start with storage prefix such
            as `s3://`, `gs://`, `az://` or "file:///".
        delimiter : Character for delimiting columns.
        header : Whether the files include a header row.
        output : Dictionary or feature class defining column names and their
            corresponding types. List of column names is also accepted, in which
            case types will be inferred.
        object_name : Created object column name.
        model_name : Generated model name.
        source : Whether to include info about the source file.
        nrows : Optional row limit.
        session : Session to use for the chain.
        settings : Settings to use for the chain.
        column_types : Dictionary of column names and their corresponding types.
            It is passed to CSV reader and for each column specified type auto
            inference is disabled.

    Example:
        Reading a csv file:
        ```py
        dc = DataChain.from_csv("s3://mybucket/file.csv")
        ```

        Reading csv files from a directory as a combined dataset:
        ```py
        dc = DataChain.from_csv("s3://mybucket/dir")
        ```
    """
    from pandas.io.parsers.readers import STR_NA_VALUES
    from pyarrow.csv import ConvertOptions, ParseOptions, ReadOptions
    from pyarrow.dataset import CsvFileFormat
    from pyarrow.lib import type_for_alias

    if column_types:
        column_types = {
            name: type_for_alias(typ) if isinstance(typ, str) else typ
            for name, typ in column_types.items()
        }
    else:
        column_types = {}

    chain = DataChain.from_storage(
        path, session=session, settings=settings, **kwargs
    )

    column_names = None
    if not header:
        if not output:
            msg = "error parsing csv - provide output if no header"
            raise DatasetPrepareError(chain.name, msg)
        if isinstance(output, Sequence):
            column_names = output  # type: ignore[assignment]
        elif isinstance(output, dict):
            column_names = list(output.keys())
        elif (fr := ModelStore.to_pydantic(output)) is not None:
            column_names = list(fr.model_fields.keys())
        else:
            msg = f"error parsing csv - incompatible output type {type(output)}"
            raise DatasetPrepareError(chain.name, msg)

    parse_options = ParseOptions(delimiter=delimiter)
    read_options = ReadOptions(column_names=column_names)
    convert_options = ConvertOptions(
        strings_can_be_null=True,
        null_values=STR_NA_VALUES,
        column_types=column_types,
    )
    format = CsvFileFormat(
        parse_options=parse_options,
        read_options=read_options,
        convert_options=convert_options,
    )
    return chain.parse_tabular(
        output=output,
        object_name=object_name,
        model_name=model_name,
        source=source,
        nrows=nrows,
        format=format,
    )

from_dataset classmethod

from_dataset(
    name: str,
    version: Optional[int] = None,
    session: Optional[Session] = None,
    settings: Optional[dict] = None,
) -> Self

Get data from a saved Dataset. It returns the chain itself.

Parameters:

  • name

    dataset name

  • version

    dataset version

Example
chain = DataChain.from_dataset("my_cats")
Source code in datachain/lib/dc.py
@classmethod
def from_dataset(
    cls,
    name: str,
    version: Optional[int] = None,
    session: Optional[Session] = None,
    settings: Optional[dict] = None,
) -> "Self":
    """Get data from a saved Dataset. It returns the chain itself.

    Parameters:
        name : dataset name
        version : dataset version

    Example:
        ```py
        chain = DataChain.from_dataset("my_cats")
        ```
    """
    query = DatasetQuery(
        name=name,
        version=version,
        session=session,
        indexing_column_types=File._datachain_column_types,
    )
    telemetry.send_event_once("class", "datachain_init", name=name, version=version)
    if settings:
        _settings = Settings(**settings)
    else:
        _settings = Settings()

    signals_schema = SignalSchema({"sys": Sys})
    if query.feature_schema:
        signals_schema |= SignalSchema.deserialize(query.feature_schema)
    else:
        signals_schema |= SignalSchema.from_column_types(query.column_types or {})
    return cls(query, _settings, signals_schema)

from_hf classmethod

from_hf(
    dataset: Union[str, HFDatasetType],
    *args,
    session: Optional[Session] = None,
    settings: Optional[dict] = None,
    object_name: str = "",
    model_name: str = "",
    **kwargs
) -> DataChain

Generate chain from huggingface hub dataset.

Parameters:

  • dataset

    Path or name of the dataset to read from Hugging Face Hub, or an instance of datasets.Dataset-like object.

  • session

    Session to use for the chain.

  • settings

    Settings to use for the chain.

  • object_name

    Generated object column name.

  • model_name

    Generated model name.

  • kwargs

    Parameters to pass to datasets.load_dataset.

Example

Load from Hugging Face Hub:

DataChain.from_hf("beans", split="train")

Generate chain from loaded dataset:

from datasets import load_dataset
ds = load_dataset("beans", split="train")
DataChain.from_hf(ds)

Source code in datachain/lib/dc.py
@classmethod
def from_hf(
    cls,
    dataset: Union[str, "HFDatasetType"],
    *args,
    session: Optional[Session] = None,
    settings: Optional[dict] = None,
    object_name: str = "",
    model_name: str = "",
    **kwargs,
) -> "DataChain":
    """Generate chain from huggingface hub dataset.

    Parameters:
        dataset : Path or name of the dataset to read from Hugging Face Hub,
            or an instance of `datasets.Dataset`-like object.
        session : Session to use for the chain.
        settings : Settings to use for the chain.
        object_name : Generated object column name.
        model_name : Generated model name.
        kwargs : Parameters to pass to datasets.load_dataset.

    Example:
        Load from Hugging Face Hub:
        ```py
        DataChain.from_hf("beans", split="train")
        ```

        Generate chain from loaded dataset:
        ```py
        from datasets import load_dataset
        ds = load_dataset("beans", split="train")
        DataChain.from_hf(ds)
        ```
    """
    from datachain.lib.hf import HFGenerator, get_output_schema, stream_splits

    output: dict[str, DataType] = {}
    ds_dict = stream_splits(dataset, *args, **kwargs)
    if len(ds_dict) > 1:
        output = {"split": str}

    model_name = model_name or object_name or ""
    hf_features = next(iter(ds_dict.values())).features
    output = output | get_output_schema(hf_features)
    model = dict_to_data_model(model_name, output)
    if object_name:
        output = {object_name: model}

    chain = DataChain.from_values(
        split=list(ds_dict.keys()), session=session, settings=settings
    )
    return chain.gen(HFGenerator(dataset, model, *args, **kwargs), output=output)

from_json classmethod

from_json(
    path,
    type: FileType = "text",
    spec: Optional[DataType] = None,
    schema_from: Optional[str] = "auto",
    jmespath: Optional[str] = None,
    object_name: Optional[str] = "",
    model_name: Optional[str] = None,
    format: Optional[str] = "json",
    nrows=None,
    **kwargs
) -> DataChain

Get data from JSON. It returns the chain itself.

Parameters:

  • path

    storage URI with directory. URI must start with storage prefix such as s3://, gs://, az:// or "file:///"

  • type

    read file as "binary", "text", or "image" data. Default is "text".

  • spec

    optional Data Model

  • schema_from

    path to sample to infer spec (if schema not provided)

  • object_name

    generated object column name

  • model_name

    optional generated model name

  • format (Optional[str], default: 'json' ) –

    "json", "jsonl"

  • jmespath

    optional JMESPATH expression to reduce JSON

  • nrows

    optional row limit for jsonl and JSON arrays

Example

infer JSON schema from data, reduce using JMESPATH

chain = DataChain.from_json("gs://json", jmespath="key1.key2")

infer JSON schema from a particular path

chain = DataChain.from_json("gs://json_ds", schema_from="gs://json/my.json")

Source code in datachain/lib/dc.py
@classmethod
def from_json(
    cls,
    path,
    type: FileType = "text",
    spec: Optional[DataType] = None,
    schema_from: Optional[str] = "auto",
    jmespath: Optional[str] = None,
    object_name: Optional[str] = "",
    model_name: Optional[str] = None,
    format: Optional[str] = "json",
    nrows=None,
    **kwargs,
) -> "DataChain":
    """Get data from JSON. It returns the chain itself.

    Parameters:
        path : storage URI with directory. URI must start with storage prefix such
            as `s3://`, `gs://`, `az://` or "file:///"
        type : read file as "binary", "text", or "image" data. Default is "text".
        spec : optional Data Model
        schema_from : path to sample to infer spec (if schema not provided)
        object_name : generated object column name
        model_name : optional generated model name
        format: "json", "jsonl"
        jmespath : optional JMESPATH expression to reduce JSON
        nrows : optional row limit for jsonl and JSON arrays

    Example:
        infer JSON schema from data, reduce using JMESPATH
        ```py
        chain = DataChain.from_json("gs://json", jmespath="key1.key2")
        ```

        infer JSON schema from a particular path
        ```py
        chain = DataChain.from_json("gs://json_ds", schema_from="gs://json/my.json")
        ```
    """
    if schema_from == "auto":
        schema_from = path

    def jmespath_to_name(s: str):
        name_end = re.search(r"\W", s).start() if re.search(r"\W", s) else len(s)  # type: ignore[union-attr]
        return s[:name_end]

    if (not object_name) and jmespath:
        object_name = jmespath_to_name(jmespath)
    if not object_name:
        object_name = format
    chain = DataChain.from_storage(uri=path, type=type, **kwargs)
    signal_dict = {
        object_name: read_meta(
            schema_from=schema_from,
            format=format,
            spec=spec,
            model_name=model_name,
            jmespath=jmespath,
            nrows=nrows,
        )
    }
    # disable prefetch if nrows is set
    settings = {"prefetch": 0} if nrows else {}
    return chain.settings(**settings).gen(**signal_dict)  # type: ignore[misc, arg-type]

from_pandas classmethod

from_pandas(
    df: DataFrame,
    name: str = "",
    session: Optional[Session] = None,
    settings: Optional[dict] = None,
    in_memory: bool = False,
    object_name: str = "",
) -> DataChain

Generate chain from pandas data-frame.

Example
import pandas as pd

df = pd.DataFrame({"fib": [1, 2, 3, 5, 8]})
DataChain.from_pandas(df)
Source code in datachain/lib/dc.py
@classmethod
def from_pandas(  # type: ignore[override]
    cls,
    df: "pd.DataFrame",
    name: str = "",
    session: Optional[Session] = None,
    settings: Optional[dict] = None,
    in_memory: bool = False,
    object_name: str = "",
) -> "DataChain":
    """Generate chain from pandas data-frame.

    Example:
        ```py
        import pandas as pd

        df = pd.DataFrame({"fib": [1, 2, 3, 5, 8]})
        DataChain.from_pandas(df)
        ```
    """
    fr_map = {col.lower(): df[col].tolist() for col in df.columns}

    for column in fr_map:
        if not column.isidentifier():
            raise DatasetPrepareError(
                name,
                f"import from pandas error - '{column}' cannot be a column name",
            )

    return cls.from_values(
        name,
        session,
        settings=settings,
        object_name=object_name,
        in_memory=in_memory,
        **fr_map,
    )

from_parquet classmethod

from_parquet(
    path,
    partitioning: Any = "hive",
    output: Optional[dict[str, DataType]] = None,
    object_name: str = "",
    model_name: str = "",
    source: bool = True,
    session: Optional[Session] = None,
    settings: Optional[dict] = None,
    **kwargs
) -> DataChain

Generate chain from parquet files.

Parameters:

  • path

    Storage URI with directory. URI must start with storage prefix such as s3://, gs://, az:// or "file:///".

  • partitioning

    Any pyarrow partitioning schema.

  • output

    Dictionary defining column names and their corresponding types.

  • object_name

    Created object column name.

  • model_name

    Generated model name.

  • source

    Whether to include info about the source file.

  • session

    Session to use for the chain.

  • settings

    Settings to use for the chain.

Example

Reading a single file:

dc = DataChain.from_parquet("s3://mybucket/file.parquet")

Reading a partitioned dataset from a directory:

dc = DataChain.from_parquet("s3://mybucket/dir")

Source code in datachain/lib/dc.py
@classmethod
def from_parquet(
    cls,
    path,
    partitioning: Any = "hive",
    output: Optional[dict[str, DataType]] = None,
    object_name: str = "",
    model_name: str = "",
    source: bool = True,
    session: Optional[Session] = None,
    settings: Optional[dict] = None,
    **kwargs,
) -> "DataChain":
    """Generate chain from parquet files.

    Parameters:
        path : Storage URI with directory. URI must start with storage prefix such
            as `s3://`, `gs://`, `az://` or "file:///".
        partitioning : Any pyarrow partitioning schema.
        output : Dictionary defining column names and their corresponding types.
        object_name : Created object column name.
        model_name : Generated model name.
        source : Whether to include info about the source file.
        session : Session to use for the chain.
        settings : Settings to use for the chain.

    Example:
        Reading a single file:
        ```py
        dc = DataChain.from_parquet("s3://mybucket/file.parquet")
        ```

        Reading a partitioned dataset from a directory:
        ```py
        dc = DataChain.from_parquet("s3://mybucket/dir")
        ```
    """
    chain = DataChain.from_storage(
        path, session=session, settings=settings, **kwargs
    )
    return chain.parse_tabular(
        output=output,
        object_name=object_name,
        model_name=model_name,
        source=source,
        format="parquet",
        partitioning=partitioning,
    )

from_records classmethod

from_records(
    to_insert: Optional[Union[dict, list[dict]]],
    session: Optional[Session] = None,
    settings: Optional[dict] = None,
    in_memory: bool = False,
    schema: Optional[dict[str, DataType]] = None,
) -> Self

Create a DataChain from the provided records. This method can be used for programmatically generating a chain in contrast of reading data from storages or other sources.

Parameters:

  • to_insert

    records (or a single record) to insert. Each record is a dictionary of signals and theirs values.

  • schema

    describes chain signals and their corresponding types

Example
single_record = DataChain.from_records(DataChain.DEFAULT_FILE_RECORD)
Source code in datachain/lib/dc.py
@classmethod
def from_records(
    cls,
    to_insert: Optional[Union[dict, list[dict]]],
    session: Optional[Session] = None,
    settings: Optional[dict] = None,
    in_memory: bool = False,
    schema: Optional[dict[str, DataType]] = None,
) -> "Self":
    """Create a DataChain from the provided records. This method can be used for
    programmatically generating a chain in contrast of reading data from storages
    or other sources.

    Parameters:
        to_insert : records (or a single record) to insert. Each record is
                    a dictionary of signals and theirs values.
        schema : describes chain signals and their corresponding types

    Example:
        ```py
        single_record = DataChain.from_records(DataChain.DEFAULT_FILE_RECORD)
        ```
    """
    session = Session.get(session, in_memory=in_memory)
    catalog = session.catalog

    name = session.generate_temp_dataset_name()
    signal_schema = None
    columns: list[sqlalchemy.Column] = []

    if schema:
        signal_schema = SignalSchema(schema)
        columns = [
            sqlalchemy.Column(c.name, c.type)  # type: ignore[union-attr]
            for c in signal_schema.db_signals(as_columns=True)  # type: ignore[assignment]
        ]
    else:
        columns = [
            sqlalchemy.Column(name, typ)
            for name, typ in File._datachain_column_types.items()
        ]

    dsr = catalog.create_dataset(
        name,
        columns=columns,
        feature_schema=(
            signal_schema.clone_without_sys_signals().serialize()
            if signal_schema
            else None
        ),
    )

    session.add_dataset_version(dsr, dsr.latest_version)

    if isinstance(to_insert, dict):
        to_insert = [to_insert]
    elif not to_insert:
        to_insert = []

    warehouse = catalog.warehouse
    dr = warehouse.dataset_rows(dsr)
    db = warehouse.db
    insert_q = dr.get_table().insert()
    for record in to_insert:
        db.execute(insert_q.values(**record))
    return cls.from_dataset(name=dsr.name, session=session, settings=settings)

from_storage classmethod

from_storage(
    uri,
    *,
    type: FileType = "binary",
    session: Optional[Session] = None,
    settings: Optional[dict] = None,
    in_memory: bool = False,
    recursive: Optional[bool] = True,
    object_name: str = "file",
    update: bool = False,
    anon: bool = False
) -> Self

Get data from a storage as a list of file with all file attributes. It returns the chain itself as usual.

Parameters:

  • uri

    storage URI with directory. URI must start with storage prefix such as s3://, gs://, az:// or "file:///"

  • type

    read file as "binary", "text", or "image" data. Default is "binary".

  • recursive

    search recursively for the given path.

  • object_name

    Created object column name.

  • update

    force storage reindexing. Default is False.

  • anon

    If True, we will treat cloud bucket as public one

Example
chain = DataChain.from_storage("s3://my-bucket/my-dir")
Source code in datachain/lib/dc.py
@classmethod
def from_storage(
    cls,
    uri,
    *,
    type: FileType = "binary",
    session: Optional[Session] = None,
    settings: Optional[dict] = None,
    in_memory: bool = False,
    recursive: Optional[bool] = True,
    object_name: str = "file",
    update: bool = False,
    anon: bool = False,
) -> "Self":
    """Get data from a storage as a list of file with all file attributes.
    It returns the chain itself as usual.

    Parameters:
        uri : storage URI with directory. URI must start with storage prefix such
            as `s3://`, `gs://`, `az://` or "file:///"
        type : read file as "binary", "text", or "image" data. Default is "binary".
        recursive : search recursively for the given path.
        object_name : Created object column name.
        update : force storage reindexing. Default is False.
        anon : If True, we will treat cloud bucket as public one

    Example:
        ```py
        chain = DataChain.from_storage("s3://my-bucket/my-dir")
        ```
    """
    file_type = get_file_type(type)

    client_config = {"anon": True} if anon else None
    session = Session.get(session, client_config=client_config, in_memory=in_memory)
    cache = session.catalog.cache
    client_config = session.catalog.client_config

    list_ds_name, list_uri, list_path, list_ds_exists = get_listing(
        uri, session, update=update
    )

    # ds_name is None if object is a file, we don't want to use cache
    # or do listing in that case - just read that single object
    if not list_ds_name:
        dc = cls.from_values(
            session=session,
            settings=settings,
            in_memory=in_memory,
            file=[get_file_info(list_uri, cache, client_config=client_config)],
        )
        dc.signals_schema = dc.signals_schema.mutate({f"{object_name}": file_type})
        return dc

    if update or not list_ds_exists:
        # disable prefetch for listing, as it pre-downloads all files
        (
            cls.from_records(
                DataChain.DEFAULT_FILE_RECORD,
                session=session,
                settings=settings,
                in_memory=in_memory,
            )
            .settings(prefetch=0)
            .gen(
                list_bucket(list_uri, cache, client_config=client_config),
                output={f"{object_name}": File},
            )
            .save(list_ds_name, listing=True)
        )

    dc = cls.from_dataset(list_ds_name, session=session, settings=settings)
    dc.signals_schema = dc.signals_schema.mutate({f"{object_name}": file_type})

    return ls(dc, list_path, recursive=recursive, object_name=object_name)

from_values classmethod

from_values(
    ds_name: str = "",
    session: Optional[Session] = None,
    settings: Optional[dict] = None,
    in_memory: bool = False,
    output: OutputType = None,
    object_name: str = "",
    **fr_map
) -> Self

Generate chain from list of values.

Example
DataChain.from_values(fib=[1, 2, 3, 5, 8])
Source code in datachain/lib/dc.py
@classmethod
def from_values(
    cls,
    ds_name: str = "",
    session: Optional[Session] = None,
    settings: Optional[dict] = None,
    in_memory: bool = False,
    output: OutputType = None,
    object_name: str = "",
    **fr_map,
) -> "Self":
    """Generate chain from list of values.

    Example:
        ```py
        DataChain.from_values(fib=[1, 2, 3, 5, 8])
        ```
    """
    tuple_type, output, tuples = values_to_tuples(ds_name, output, **fr_map)

    def _func_fr() -> Iterator[tuple_type]:  # type: ignore[valid-type]
        yield from tuples

    chain = cls.from_records(
        DataChain.DEFAULT_FILE_RECORD,
        session=session,
        settings=settings,
        in_memory=in_memory,
    )
    if object_name:
        output = {object_name: dict_to_data_model(object_name, output)}  # type: ignore[arg-type]
    return chain.gen(_func_fr, output=output)

gen

gen(
    func: Optional[Union[Callable, Generator]] = None,
    params: Union[None, str, Sequence[str]] = None,
    output: OutputType = None,
    **signal_map
) -> Self

Apply a function to each row to create new rows (with potentially new signals). The function needs to return a new objects for each of the new rows. It returns a chain itself with new signals.

Input-output relationship: 1:N

This method is similar to map(), uses the same list of parameters, but with one key differences: It produces a sequence of rows for each input row (like extracting multiple file records from a single tar file or bounding boxes from a single image file).

Example
chain = chain.gen(
    line=lambda file: [l for l in file.read().split("\n")],
    output=str,
)
chain.save("new_dataset")
Source code in datachain/lib/dc.py
def gen(
    self,
    func: Optional[Union[Callable, Generator]] = None,
    params: Union[None, str, Sequence[str]] = None,
    output: OutputType = None,
    **signal_map,
) -> "Self":
    r"""Apply a function to each row to create new rows (with potentially new
    signals). The function needs to return a new objects for each of the new rows.
    It returns a chain itself with new signals.

    Input-output relationship: 1:N

    This method is similar to `map()`, uses the same list of parameters, but with
    one key differences: It produces a sequence of rows for each input row (like
    extracting multiple file records from a single tar file or bounding boxes from a
    single image file).

    Example:
        ```py
        chain = chain.gen(
            line=lambda file: [l for l in file.read().split("\n")],
            output=str,
        )
        chain.save("new_dataset")
        ```
    """
    udf_obj = self._udf_to_obj(Generator, func, params, output, signal_map)
    if (prefetch := self._settings.prefetch) is not None:
        udf_obj.prefetch = prefetch
    return self._evolve(
        query=self._query.generate(
            udf_obj.to_udf_wrapper(),
            **self._settings.to_dict(),
        ),
        signal_schema=udf_obj.output,
    )

group_by

group_by(
    *,
    partition_by: Optional[
        Union[str, Func, Sequence[Union[str, Func]]]
    ] = None,
    **kwargs: Func
) -> Self

Group rows by specified set of signals and return new signals with aggregated values.

The supported functions

count(), sum(), avg(), min(), max(), any_value(), collect(), concat()

Example
chain = chain.group_by(
    cnt=func.count(),
    partition_by=("file_source", "file_ext"),
)
Source code in datachain/lib/dc.py
def group_by(
    self,
    *,
    partition_by: Optional[Union[str, Func, Sequence[Union[str, Func]]]] = None,
    **kwargs: Func,
) -> "Self":
    """Group rows by specified set of signals and return new signals
    with aggregated values.

    The supported functions:
       count(), sum(), avg(), min(), max(), any_value(), collect(), concat()

    Example:
        ```py
        chain = chain.group_by(
            cnt=func.count(),
            partition_by=("file_source", "file_ext"),
        )
        ```
    """
    if partition_by is None:
        partition_by = []
    elif isinstance(partition_by, (str, Func)):
        partition_by = [partition_by]

    partition_by_columns: list[Column] = []
    signal_columns: list[Column] = []
    schema_fields: dict[str, DataType] = {}

    # validate partition_by columns and add them to the schema
    for col in partition_by:
        if isinstance(col, str):
            col_db_name = ColumnMeta.to_db_name(col)
            col_type = self.signals_schema.get_column_type(col_db_name)
            column = Column(col_db_name, python_to_sql(col_type))
        elif isinstance(col, Function):
            column = col.get_column(self.signals_schema)
            col_db_name = column.name
            col_type = column.type.python_type
        else:
            raise DataChainColumnError(
                col,
                (
                    f"partition_by column {col} has type {type(col)}"
                    " but expected str or Function"
                ),
            )
        partition_by_columns.append(column)
        schema_fields[col_db_name] = col_type

    # validate signal columns and add them to the schema
    if not kwargs:
        raise ValueError("At least one column should be provided for group_by")
    for col_name, func in kwargs.items():
        if not isinstance(func, Func):
            raise DataChainColumnError(
                col_name,
                f"Column {col_name} has type {type(func)} but expected Func object",
            )
        column = func.get_column(self.signals_schema, label=col_name)
        signal_columns.append(column)
        schema_fields[col_name] = func.get_result_type(self.signals_schema)

    return self._evolve(
        query=self._query.group_by(signal_columns, partition_by_columns),
        signal_schema=SignalSchema(schema_fields),
    )

limit

limit(n: int) -> Self

Return the first n rows of the chain.

If the chain is unordered, which rows are returned is undefined. If the chain has less than n rows, the whole chain is returned.

Parameters:

  • n (int) –

    Number of rows to return.

Source code in datachain/lib/dc.py
def limit(self, n: int) -> "Self":
    """Return the first `n` rows of the chain.

    If the chain is unordered, which rows are returned is undefined.
    If the chain has less than `n` rows, the whole chain is returned.

    Parameters:
        n (int): Number of rows to return.
    """
    return self._evolve(query=self._query.limit(n))

listings classmethod

listings(
    session: Optional[Session] = None,
    in_memory: bool = False,
    object_name: str = "listing",
    **kwargs
) -> DataChain

Generate chain with list of cached listings. Listing is a special kind of dataset which has directory listing data of some underlying storage (e.g S3 bucket).

Example
from datachain import DataChain
DataChain.listings().show()
Source code in datachain/lib/dc.py
@classmethod
def listings(
    cls,
    session: Optional[Session] = None,
    in_memory: bool = False,
    object_name: str = "listing",
    **kwargs,
) -> "DataChain":
    """Generate chain with list of cached listings.
    Listing is a special kind of dataset which has directory listing data of
    some underlying storage (e.g S3 bucket).

    Example:
        ```py
        from datachain import DataChain
        DataChain.listings().show()
        ```
    """
    session = Session.get(session, in_memory=in_memory)
    catalog = kwargs.get("catalog") or session.catalog

    return cls.from_values(
        session=session,
        in_memory=in_memory,
        output={object_name: ListingInfo},
        **{object_name: catalog.listings()},  # type: ignore[arg-type]
    )

map

map(
    func: Optional[Callable] = None,
    params: Union[None, str, Sequence[str]] = None,
    output: OutputType = None,
    **signal_map
) -> Self

Apply a function to each row to create new signals. The function should return a new object for each row. It returns a chain itself with new signals.

Input-output relationship: 1:1

Parameters:

  • func

    Function applied to each row.

  • params

    List of column names used as input for the function. Default is taken from function signature.

  • output

    Dictionary defining new signals and their corresponding types. Default type is taken from function signature. Default can be also taken from kwargs - **signal_map (see below). If signal name is defined using signal_map (see below) only a single type value can be used.

  • **signal_map

    kwargs can be used to define func together with it's return signal name in format of map(my_sign=my_func). This helps define signal names and function in a nicer way.

Example

Using signal_map and single type in output:

chain = chain.map(value=lambda name: name[:-4] + ".json", output=str)
chain.save("new_dataset")

Using func and output as a map:

chain = chain.map(
    lambda name: name.split("."), output={"stem": str, "ext": str}
)
chain.save("new_dataset")

Source code in datachain/lib/dc.py
def map(
    self,
    func: Optional[Callable] = None,
    params: Union[None, str, Sequence[str]] = None,
    output: OutputType = None,
    **signal_map,
) -> "Self":
    """Apply a function to each row to create new signals. The function should
    return a new object for each row. It returns a chain itself with new signals.

    Input-output relationship: 1:1

    Parameters:
        func : Function applied to each row.
        params : List of column names used as input for the function. Default
                is taken from function signature.
        output : Dictionary defining new signals and their corresponding types.
                Default type is taken from function signature. Default can be also
                taken from kwargs - **signal_map (see below).
                If signal name is defined using signal_map (see below) only a single
                type value can be used.
        **signal_map : kwargs can be used to define `func` together with it's return
                signal name in format of `map(my_sign=my_func)`. This helps define
                signal names and function in a nicer way.

    Example:
        Using signal_map and single type in output:
        ```py
        chain = chain.map(value=lambda name: name[:-4] + ".json", output=str)
        chain.save("new_dataset")
        ```

        Using func and output as a map:
        ```py
        chain = chain.map(
            lambda name: name.split("."), output={"stem": str, "ext": str}
        )
        chain.save("new_dataset")
        ```
    """
    udf_obj = self._udf_to_obj(Mapper, func, params, output, signal_map)
    if (prefetch := self._settings.prefetch) is not None:
        udf_obj.prefetch = prefetch

    return self._evolve(
        query=self._query.add_signals(
            udf_obj.to_udf_wrapper(),
            **self._settings.to_dict(),
        ),
        signal_schema=self.signals_schema | udf_obj.output,
    )

max

max(fr: DataType)

Compute the maximum of a column.

Source code in datachain/lib/dc.py
def max(self, fr: DataType):  # type: ignore[override]
    """Compute the maximum of a column."""
    return self._extend_to_data_model("max", fr)

merge

merge(
    right_ds: DataChain,
    on: Union[MergeColType, Sequence[MergeColType]],
    right_on: Optional[
        Union[MergeColType, Sequence[MergeColType]]
    ] = None,
    inner=False,
    rname="right_",
) -> Self

Merge two chains based on the specified criteria.

Parameters:

  • right_ds (DataChain) –

    Chain to join with.

  • on (Union[MergeColType, Sequence[MergeColType]]) –

    Predicate ("column.name", C("column.name"), or Func) or list of Predicates to join on. If both chains have the same predicates then this predicate is enough for the join. Otherwise, right_on parameter has to specify the predicates for the other chain.

  • right_on (Optional[Union[MergeColType, Sequence[MergeColType]]], default: None ) –

    Optional predicate or list of Predicates for the right_ds to join.

  • inner (bool, default: False ) –

    Whether to run inner join or outer join.

  • rname (str, default: 'right_' ) –

    Name prefix for conflicting signal names.

Examples:

meta = meta_emd.merge(meta_pq, on=(C.name, C.emd__index),
                      right_on=(C.name, C.pq__index))
imgs.merge(captions,
           on=func.path.file_stem(imgs.c("file.path")),
           right_on=func.path.file_stem(captions.c("file.path"))

)

Source code in datachain/lib/dc.py
def merge(
    self,
    right_ds: "DataChain",
    on: Union[MergeColType, Sequence[MergeColType]],
    right_on: Optional[Union[MergeColType, Sequence[MergeColType]]] = None,
    inner=False,
    rname="right_",
) -> "Self":
    """Merge two chains based on the specified criteria.

    Parameters:
        right_ds: Chain to join with.
        on: Predicate ("column.name", C("column.name"), or Func) or list of
            Predicates to join on. If both chains have the same predicates then
            this predicate is enough for the join. Otherwise, `right_on` parameter
            has to specify the predicates for the other chain.
        right_on: Optional predicate or list of Predicates for the `right_ds`
            to join.
        inner (bool): Whether to run inner join or outer join.
        rname (str): Name prefix for conflicting signal names.

    Examples:
        ```py
        meta = meta_emd.merge(meta_pq, on=(C.name, C.emd__index),
                              right_on=(C.name, C.pq__index))
        ```

        ```py
        imgs.merge(captions,
                   on=func.path.file_stem(imgs.c("file.path")),
                   right_on=func.path.file_stem(captions.c("file.path"))
        ```
    )
    """
    if on is None:
        raise DatasetMergeError(["None"], None, "'on' must be specified")

    on = _validate_merge_on(on, self)
    if not on:
        raise DatasetMergeError(
            on,
            right_on,
            (
                "'on' must be 'str', 'Func' or 'Sequence' object "
                f"but got type '{type(on)}'"
            ),
        )

    if right_on is not None:
        right_on = _validate_merge_on(right_on, right_ds)
        if not right_on:
            raise DatasetMergeError(
                on,
                right_on,
                "'right_on' must be 'str', 'Func' or 'Sequence' object"
                f" but got type '{type(right_on)}'",
            )

        if len(right_on) != len(on):
            raise DatasetMergeError(
                on, right_on, "'on' and 'right_on' must have the same length'"
            )

    if self == right_ds:
        right_ds = right_ds.clone()

    errors = []

    def _resolve(
        ds: DataChain,
        col: Union[str, Function, sqlalchemy.ColumnElement],
        side: Union[str, None],
    ):
        try:
            if isinstance(col, Function):
                return ds.c(col.get_column())
            return ds.c(col) if isinstance(col, (str, C)) else col
        except ValueError:
            if side:
                errors.append(f"{_get_merge_error_str(col)} in {side}")

    ops = [
        _resolve(self, left, "left")
        == _resolve(right_ds, right, "right" if right_on else None)
        for left, right in zip(on, right_on or on)
    ]

    if errors:
        raise DatasetMergeError(
            on, right_on, f"Could not resolve {', '.join(errors)}"
        )

    query = self._query.join(
        right_ds._query, sqlalchemy.and_(*ops), inner, rname + "{name}"
    )
    query.feature_schema = None
    ds = self._evolve(query=query)

    signals_schema = self.signals_schema.clone_without_sys_signals()
    right_signals_schema = right_ds.signals_schema.clone_without_sys_signals()
    ds.signals_schema = SignalSchema({"sys": Sys}) | signals_schema.merge(
        right_signals_schema, rname
    )

    return ds

min

min(fr: DataType)

Compute the minimum of a column.

Source code in datachain/lib/dc.py
def min(self, fr: DataType):  # type: ignore[override]
    """Compute the minimum of a column."""
    return self._extend_to_data_model("min", fr)

mutate

mutate(**kwargs) -> Self

Create new signals based on existing signals.

This method cannot modify existing columns. If you need to modify an existing column, use a different name for the new column and then use select() to choose which columns to keep.

This method is vectorized and more efficient compared to map(), and it does not extract or download any data from the internal database. However, it can only utilize predefined built-in functions and their combinations.

The supported functions

Numerical: +, -, *, /, rand(), avg(), count(), func(), greatest(), least(), max(), min(), sum() String: length(), split(), replace(), regexp_replace() Filename: name(), parent(), file_stem(), file_ext() Array: length(), sip_hash_64(), euclidean_distance(), cosine_distance() Window: row_number(), rank(), dense_rank(), first()

Example:

 dc.mutate(
    area=Column("image.height") * Column("image.width"),
    extension=file_ext(Column("file.name")),
    dist=cosine_distance(embedding_text, embedding_image)
)

Window function example:

window = func.window(partition_by="file.parent", order_by="file.size")
dc.mutate(
    row_number=func.row_number().over(window),
)

This method can be also used to rename signals. If the Column("name") provided as value for the new signal - the old column will be dropped. Otherwise a new column is created.

Example:

 dc.mutate(
    newkey=Column("oldkey")
)

Source code in datachain/lib/dc.py
def mutate(self, **kwargs) -> "Self":
    """Create new signals based on existing signals.

    This method cannot modify existing columns. If you need to modify an
    existing column, use a different name for the new column and then use
    `select()` to choose which columns to keep.

    This method is vectorized and more efficient compared to map(), and it does not
    extract or download any data from the internal database. However, it can only
    utilize predefined built-in functions and their combinations.

    The supported functions:
       Numerical:   +, -, *, /, rand(), avg(), count(), func(),
                    greatest(), least(), max(), min(), sum()
       String:      length(), split(), replace(), regexp_replace()
       Filename:    name(), parent(), file_stem(), file_ext()
       Array:       length(), sip_hash_64(), euclidean_distance(),
                    cosine_distance()
       Window:      row_number(), rank(), dense_rank(), first()

    Example:
    ```py
     dc.mutate(
        area=Column("image.height") * Column("image.width"),
        extension=file_ext(Column("file.name")),
        dist=cosine_distance(embedding_text, embedding_image)
    )
    ```

    Window function example:
    ```py
    window = func.window(partition_by="file.parent", order_by="file.size")
    dc.mutate(
        row_number=func.row_number().over(window),
    )
    ```

    This method can be also used to rename signals. If the Column("name") provided
    as value for the new signal - the old column will be dropped. Otherwise a new
    column is created.

    Example:
    ```py
     dc.mutate(
        newkey=Column("oldkey")
    )
    ```
    """
    for col_name, expr in kwargs.items():
        if not isinstance(expr, (Column, Func)) and isinstance(expr.type, NullType):
            raise DataChainColumnError(
                col_name, f"Cannot infer type with expression {expr}"
            )

    mutated = {}
    schema = self.signals_schema
    for name, value in kwargs.items():
        if isinstance(value, Column):
            # renaming existing column
            for signal in schema.db_signals(name=value.name, as_columns=True):
                mutated[signal.name.replace(value.name, name, 1)] = signal  # type: ignore[union-attr]
        elif isinstance(value, Func):
            # adding new signal
            mutated[name] = value.get_column(schema)
        else:
            # adding new signal
            mutated[name] = value

    return self._evolve(
        query=self._query.mutate(**mutated), signal_schema=schema.mutate(kwargs)
    )

offset

offset(offset: int) -> Self

Return the results starting with the offset row.

If the chain is unordered, which rows are skipped in undefined. If the chain has less than offset rows, the result is an empty chain.

Parameters:

  • offset (int) –

    Number of rows to skip.

Source code in datachain/lib/dc.py
def offset(self, offset: int) -> "Self":
    """Return the results starting with the offset row.

    If the chain is unordered, which rows are skipped in undefined.
    If the chain has less than `offset` rows, the result is an empty chain.

    Parameters:
        offset (int): Number of rows to skip.
    """
    return self._evolve(query=self._query.offset(offset))

order_by

order_by(*args, descending: bool = False) -> Self

Orders by specified set of columns.

Parameters:

  • descending (bool, default: False ) –

    Whether to sort in descending order or not.

Example
dc.order_by("similarity_score", descending=True).limit(10)
Note

Order is not guaranteed when steps are added after an order_by statement. I.e. when using from_dataset an order_by statement should be used if the order of the records in the chain is important. Using order_by directly before limit, collect and collect_flatten will give expected results. See https://github.com/iterative/datachain/issues/477 for further details.

Source code in datachain/lib/dc.py
@resolve_columns
def order_by(self, *args, descending: bool = False) -> "Self":
    """Orders by specified set of columns.

    Parameters:
        descending (bool): Whether to sort in descending order or not.

    Example:
        ```py
        dc.order_by("similarity_score", descending=True).limit(10)
        ```

    Note:
        Order is not guaranteed when steps are added after an `order_by` statement.
        I.e. when using `from_dataset` an `order_by` statement should be used if
        the order of the records in the chain is important.
        Using `order_by` directly before `limit`, `collect` and `collect_flatten`
        will give expected results.
        See https://github.com/iterative/datachain/issues/477 for further details.
    """
    if descending:
        args = tuple(sqlalchemy.desc(a) for a in args)

    return self._evolve(query=self._query.order_by(*args))

parse_tabular

parse_tabular(
    output: OutputType = None,
    object_name: str = "",
    model_name: str = "",
    source: bool = True,
    nrows: Optional[int] = None,
    **kwargs
) -> Self

Generate chain from list of tabular files.

Parameters:

  • output

    Dictionary or feature class defining column names and their corresponding types. List of column names is also accepted, in which case types will be inferred.

  • object_name

    Generated object column name.

  • model_name

    Generated model name.

  • source

    Whether to include info about the source file.

  • nrows

    Optional row limit.

  • kwargs

    Parameters to pass to pyarrow.dataset.dataset.

Example

Reading a json lines file:

dc = DataChain.from_storage("s3://mybucket/file.jsonl")
dc = dc.parse_tabular(format="json")

Reading a filtered list of files as a dataset:

dc = DataChain.from_storage("s3://mybucket")
dc = dc.filter(C("file.name").glob("*.jsonl"))
dc = dc.parse_tabular(format="json")

Source code in datachain/lib/dc.py
def parse_tabular(
    self,
    output: OutputType = None,
    object_name: str = "",
    model_name: str = "",
    source: bool = True,
    nrows: Optional[int] = None,
    **kwargs,
) -> "Self":
    """Generate chain from list of tabular files.

    Parameters:
        output : Dictionary or feature class defining column names and their
            corresponding types. List of column names is also accepted, in which
            case types will be inferred.
        object_name : Generated object column name.
        model_name : Generated model name.
        source : Whether to include info about the source file.
        nrows : Optional row limit.
        kwargs : Parameters to pass to pyarrow.dataset.dataset.

    Example:
        Reading a json lines file:
        ```py
        dc = DataChain.from_storage("s3://mybucket/file.jsonl")
        dc = dc.parse_tabular(format="json")
        ```

        Reading a filtered list of files as a dataset:
        ```py
        dc = DataChain.from_storage("s3://mybucket")
        dc = dc.filter(C("file.name").glob("*.jsonl"))
        dc = dc.parse_tabular(format="json")
        ```
    """
    from pyarrow.dataset import CsvFileFormat, JsonFileFormat

    from datachain.lib.arrow import ArrowGenerator, infer_schema, schema_to_output

    if nrows:
        format = kwargs.get("format")
        if format not in ["csv", "json"] and not isinstance(
            format, (CsvFileFormat, JsonFileFormat)
        ):
            raise DatasetPrepareError(
                self.name,
                "error in `parse_tabular` - "
                "`nrows` only supported for csv and json formats.",
            )

    if "file" not in self.schema or not self.count():
        raise DatasetPrepareError(self.name, "no files to parse.")

    schema = None
    col_names = output if isinstance(output, Sequence) else None
    if col_names or not output:
        try:
            schema = infer_schema(self, **kwargs)
            output, _ = schema_to_output(schema, col_names)
        except ValueError as e:
            raise DatasetPrepareError(self.name, e) from e

    if isinstance(output, dict):
        model_name = model_name or object_name or ""
        model = dict_to_data_model(model_name, output)
        output = model
    else:
        model = output  # type: ignore[assignment]

    if object_name:
        output = {object_name: model}  # type: ignore[dict-item]
    elif isinstance(output, type(BaseModel)):
        output = {
            name: info.annotation  # type: ignore[misc]
            for name, info in output.model_fields.items()
        }

    if source:
        output = {"source": ArrowRow} | output  # type: ignore[assignment,operator]

    # disable prefetch if nrows is set
    settings = {"prefetch": 0} if nrows else {}
    return self.settings(**settings).gen(  # type: ignore[arg-type]
        ArrowGenerator(schema, model, source, nrows, **kwargs), output=output
    )

print_schema

print_schema() -> None

Print schema of the chain.

Source code in datachain/lib/dc.py
def print_schema(self) -> None:
    """Print schema of the chain."""
    self._effective_signals_schema.print_tree()

reset_settings

reset_settings(settings: Optional[Settings] = None) -> Self

Reset all settings to default values.

Source code in datachain/lib/dc.py
def reset_settings(self, settings: Optional[Settings] = None) -> "Self":
    """Reset all settings to default values."""
    self._settings = settings if settings else Settings()
    return self

sample

sample(n) -> Self

Return a random sample from the chain.

Parameters:

  • n (int) –

    Number of samples to draw.

NOTE: Samples are not deterministic, and streamed/paginated queries or multiple workers will draw samples with replacement.

Source code in datachain/lib/dc.py
def sample(self, n) -> "Self":
    """Return a random sample from the chain.

    Parameters:
        n (int): Number of samples to draw.

    NOTE: Samples are not deterministic, and streamed/paginated queries or
    multiple workers will draw samples with replacement.
    """
    return self._evolve(query=self._query.sample(n))

save

save(
    name: Optional[str] = None,
    version: Optional[int] = None,
    **kwargs
) -> Self

Save to a Dataset. It returns the chain itself.

Parameters:

  • name

    dataset name. Empty name saves to a temporary dataset that will be removed after process ends. Temp dataset are useful for optimization.

  • version

    version of a dataset. Default - the last version that exist.

Source code in datachain/lib/dc.py
def save(  # type: ignore[override]
    self, name: Optional[str] = None, version: Optional[int] = None, **kwargs
) -> "Self":
    """Save to a Dataset. It returns the chain itself.

    Parameters:
        name : dataset name. Empty name saves to a temporary dataset that will be
            removed after process ends. Temp dataset are useful for optimization.
        version : version of a dataset. Default - the last version that exist.
    """
    schema = self.signals_schema.clone_without_sys_signals().serialize()
    return self._evolve(
        query=self._query.save(
            name=name, version=version, feature_schema=schema, **kwargs
        )
    )

select

select(*args: str, _sys: bool = True) -> Self

Select only a specified set of signals.

Source code in datachain/lib/dc.py
def select(self, *args: str, _sys: bool = True) -> "Self":
    """Select only a specified set of signals."""
    new_schema = self.signals_schema.resolve(*args)
    if _sys:
        new_schema = SignalSchema({"sys": Sys}) | new_schema
    columns = new_schema.db_signals()
    return self._evolve(
        query=self._query.select(*columns), signal_schema=new_schema
    )

select_except

select_except(*args: str) -> Self

Select all the signals expect the specified signals.

Source code in datachain/lib/dc.py
def select_except(self, *args: str) -> "Self":
    """Select all the signals expect the specified signals."""
    new_schema = self.signals_schema.select_except_signals(*args)
    columns = new_schema.db_signals()
    return self._evolve(
        query=self._query.select(*columns), signal_schema=new_schema
    )

settings

settings(
    cache=None,
    parallel=None,
    workers=None,
    min_task_size=None,
    prefetch: Optional[int] = None,
    sys: Optional[bool] = None,
) -> Self

Change settings for chain.

This function changes specified settings without changing not specified ones. It returns chain, so, it can be chained later with next operation.

Parameters:

  • cache

    data caching (default=False)

  • parallel

    number of thread for processors. True is a special value to enable all available CPUs (default=1)

  • workers

    number of distributed workers. Only for Studio mode. (default=1)

  • min_task_size

    minimum number of tasks (default=1)

  • prefetch (Optional[int], default: None ) –

    number of workers to use for downloading files in advance. This is enabled by default and uses 2 workers. To disable prefetching, set it to 0.

Example
chain = (
    chain
    .settings(cache=True, parallel=8)
    .map(laion=process_webdataset(spec=WDSLaion), params="file")
)
Source code in datachain/lib/dc.py
def settings(
    self,
    cache=None,
    parallel=None,
    workers=None,
    min_task_size=None,
    prefetch: Optional[int] = None,
    sys: Optional[bool] = None,
) -> "Self":
    """Change settings for chain.

    This function changes specified settings without changing not specified ones.
    It returns chain, so, it can be chained later with next operation.

    Parameters:
        cache : data caching (default=False)
        parallel : number of thread for processors. True is a special value to
            enable all available CPUs (default=1)
        workers : number of distributed workers. Only for Studio mode. (default=1)
        min_task_size : minimum number of tasks (default=1)
        prefetch: number of workers to use for downloading files in advance.
                  This is enabled by default and uses 2 workers.
                  To disable prefetching, set it to 0.

    Example:
        ```py
        chain = (
            chain
            .settings(cache=True, parallel=8)
            .map(laion=process_webdataset(spec=WDSLaion), params="file")
        )
        ```
    """
    if sys is None:
        sys = self._sys
    settings = copy.copy(self._settings)
    settings.add(Settings(cache, parallel, workers, min_task_size, prefetch))
    return self._evolve(settings=settings, _sys=sys)

setup

setup(**kwargs) -> Self

Setup variables to pass to UDF functions.

Use before running map/gen/agg/batch_map to save an object and pass it as an argument to the UDF.

Example
import anthropic
from anthropic.types import Message

(
    DataChain.from_storage(DATA, type="text")
    .settings(parallel=4, cache=True)
    .setup(client=lambda: anthropic.Anthropic(api_key=API_KEY))
    .map(
        claude=lambda client, file: client.messages.create(
            model=MODEL,
            system=PROMPT,
            messages=[{"role": "user", "content": file.get_value()}],
        ),
        output=Message,
    )
)
Source code in datachain/lib/dc.py
def setup(self, **kwargs) -> "Self":
    """Setup variables to pass to UDF functions.

    Use before running map/gen/agg/batch_map to save an object and pass it as an
    argument to the UDF.

    Example:
        ```py
        import anthropic
        from anthropic.types import Message

        (
            DataChain.from_storage(DATA, type="text")
            .settings(parallel=4, cache=True)
            .setup(client=lambda: anthropic.Anthropic(api_key=API_KEY))
            .map(
                claude=lambda client, file: client.messages.create(
                    model=MODEL,
                    system=PROMPT,
                    messages=[{"role": "user", "content": file.get_value()}],
                ),
                output=Message,
            )
        )
        ```
    """
    intersection = set(self._setup.keys()) & set(kwargs.keys())
    if intersection:
        keys = ", ".join(intersection)
        raise DatasetPrepareError(self.name, f"this value(s) already setup: {keys}")

    self._setup = self._setup | kwargs
    return self

show

show(
    limit: int = 20,
    flatten=False,
    transpose=False,
    truncate=True,
) -> None

Show a preview of the chain results.

Parameters:

  • limit

    How many rows to show.

  • flatten

    Whether to use a multiindex or flatten column names.

  • transpose

    Whether to transpose rows and columns.

  • truncate

    Whether or not to truncate the contents of columns.

Source code in datachain/lib/dc.py
def show(
    self,
    limit: int = 20,
    flatten=False,
    transpose=False,
    truncate=True,
) -> None:
    """Show a preview of the chain results.

    Parameters:
        limit : How many rows to show.
        flatten : Whether to use a multiindex or flatten column names.
        transpose : Whether to transpose rows and columns.
        truncate : Whether or not to truncate the contents of columns.
    """
    import pandas as pd

    dc = self.limit(limit) if limit > 0 else self  # type: ignore[misc]
    df = dc.to_pandas(flatten)

    if df.empty:
        print("Empty result")
        print(f"Columns: {list(df.columns)}")
        return

    if transpose:
        df = df.T

    options: list = [
        "display.max_columns",
        None,
        "display.multi_sparse",
        False,
    ]

    try:
        if columns := os.get_terminal_size().columns:
            options.extend(["display.width", columns])
    except OSError:
        pass

    if not truncate:
        options.extend(["display.max_colwidth", None])

    with pd.option_context(*options):
        if inside_notebook():
            from IPython.display import display

            display(df)
        else:
            print(df)

    if len(df) == limit:
        print(f"\n[Limited by {len(df)} rows]")

shuffle

shuffle() -> Self

Shuffle the rows of the chain deterministically.

Source code in datachain/lib/dc.py
def shuffle(self) -> "Self":
    """Shuffle the rows of the chain deterministically."""
    return self.order_by("sys.rand")

subtract

subtract(
    other: DataChain,
    on: Optional[Union[str, Sequence[str]]] = None,
    right_on: Optional[Union[str, Sequence[str]]] = None,
) -> Self

Remove rows that appear in another chain.

Parameters:

  • other (DataChain) –

    chain whose rows will be removed from self

  • on (Optional[Union[str, Sequence[str]]], default: None ) –

    columns to consider for determining row equality in self. If unspecified, defaults to all common columns between self and other.

  • right_on (Optional[Union[str, Sequence[str]]], default: None ) –

    columns to consider for determining row equality in other. If unspecified, defaults to the same values as on.

Source code in datachain/lib/dc.py
def subtract(  # type: ignore[override]
    self,
    other: "DataChain",
    on: Optional[Union[str, Sequence[str]]] = None,
    right_on: Optional[Union[str, Sequence[str]]] = None,
) -> "Self":
    """Remove rows that appear in another chain.

    Parameters:
        other: chain whose rows will be removed from `self`
        on: columns to consider for determining row equality in `self`.
            If unspecified, defaults to all common columns
            between `self` and `other`.
        right_on: columns to consider for determining row equality in `other`.
            If unspecified, defaults to the same values as `on`.
    """
    if isinstance(on, str):
        if not on:
            raise DataChainParamsError("'on' cannot be an empty string")
        on = [on]
    elif isinstance(on, Sequence):
        if not on or any(not col for col in on):
            raise DataChainParamsError("'on' cannot contain empty strings")

    if isinstance(right_on, str):
        if not right_on:
            raise DataChainParamsError("'right_on' cannot be an empty string")
        right_on = [right_on]
    elif isinstance(right_on, Sequence):
        if not right_on or any(not col for col in right_on):
            raise DataChainParamsError("'right_on' cannot contain empty strings")

    if on is None and right_on is None:
        other_columns = set(other._effective_signals_schema.db_signals())
        signals = [
            c
            for c in self._effective_signals_schema.db_signals()
            if c in other_columns
        ]
        if not signals:
            raise DataChainParamsError("subtract(): no common columns")
    elif on is not None and right_on is None:
        right_on = on
        signals = list(self.signals_schema.resolve(*on).db_signals())
    elif on is None and right_on is not None:
        raise DataChainParamsError(
            "'on' must be specified when 'right_on' is provided"
        )
    else:
        if not isinstance(on, Sequence) or not isinstance(right_on, Sequence):
            raise TypeError(
                "'on' and 'right_on' must be 'str' or 'Sequence' object"
            )
        if len(on) != len(right_on):
            raise DataChainParamsError(
                "'on' and 'right_on' must have the same length"
            )
        signals = list(
            zip(
                self.signals_schema.resolve(*on).db_signals(),
                other.signals_schema.resolve(*right_on).db_signals(),
            )  # type: ignore[arg-type]
        )
    return self._evolve(query=self._query.subtract(other._query, signals))  # type: ignore[arg-type]

sum

sum(fr: DataType)

Compute the sum of a column.

Source code in datachain/lib/dc.py
def sum(self, fr: DataType):  # type: ignore[override]
    """Compute the sum of a column."""
    return self._extend_to_data_model("sum", fr)

to_columnar_data_with_names

to_columnar_data_with_names(
    chunk_size: int = DEFAULT_PARQUET_CHUNK_SIZE,
) -> tuple[list[str], Iterator[list[list[Any]]]]

Returns column names and the results as an iterator that provides chunks, with each chunk containing a list of columns, where each column contains a list of the row values for that column in that chunk. Useful for columnar data formats, such as parquet or other OLAP databases.

Source code in datachain/lib/dc.py
def to_columnar_data_with_names(
    self, chunk_size: int = DEFAULT_PARQUET_CHUNK_SIZE
) -> tuple[list[str], Iterator[list[list[Any]]]]:
    """Returns column names and the results as an iterator that provides chunks,
    with each chunk containing a list of columns, where each column contains a
    list of the row values for that column in that chunk. Useful for columnar data
    formats, such as parquet or other OLAP databases.
    """
    headers, _ = self._effective_signals_schema.get_headers_with_length()
    column_names = [".".join(filter(None, header)) for header in headers]

    results_iter = self.collect_flatten()

    def column_chunks() -> Iterator[list[list[Any]]]:
        for chunk_iter in batched_it(results_iter, chunk_size):
            columns: list[list[Any]] = [[] for _ in column_names]
            for row in chunk_iter:
                for i, col in enumerate(columns):
                    col.append(row[i])
            yield columns

    return column_names, column_chunks()

to_csv

to_csv(
    path: Union[str, PathLike[str]],
    delimiter: str = ",",
    fs_kwargs: Optional[dict[str, Any]] = None,
    **kwargs
) -> None

Save chain to a csv (comma-separated values) file.

Parameters:

  • path

    Path to save the file. This supports local paths as well as remote paths, such as s3:// or hf:// with fsspec.

  • delimiter

    Delimiter to use for the resulting file.

  • fs_kwargs

    Optional kwargs to pass to the fsspec filesystem, used only for write, for fsspec-type URLs, such as s3:// or hf:// when provided as the destination path.

Source code in datachain/lib/dc.py
def to_csv(
    self,
    path: Union[str, os.PathLike[str]],
    delimiter: str = ",",
    fs_kwargs: Optional[dict[str, Any]] = None,
    **kwargs,
) -> None:
    """Save chain to a csv (comma-separated values) file.

    Parameters:
        path : Path to save the file. This supports local paths as well as
            remote paths, such as s3:// or hf:// with fsspec.
        delimiter : Delimiter to use for the resulting file.
        fs_kwargs : Optional kwargs to pass to the fsspec filesystem, used only for
            write, for fsspec-type URLs, such as s3:// or hf:// when
            provided as the destination path.
    """
    import csv

    opener = open

    if isinstance(path, str) and "://" in path:
        from datachain.client.fsspec import Client

        fs_kwargs = {
            **self._query.catalog.client_config,
            **(fs_kwargs or {}),
        }

        client = Client.get_implementation(path)

        fsspec_fs = client.create_fs(**fs_kwargs)

        opener = fsspec_fs.open

    headers, _ = self._effective_signals_schema.get_headers_with_length()
    column_names = [".".join(filter(None, header)) for header in headers]

    results_iter = self.collect_flatten()

    with opener(path, "w", newline="") as f:
        writer = csv.writer(f, delimiter=delimiter, **kwargs)
        writer.writerow(column_names)

        for row in results_iter:
            writer.writerow(row)

to_json

to_json(
    path: Union[str, PathLike[str]],
    fs_kwargs: Optional[dict[str, Any]] = None,
    include_outer_list: bool = True,
) -> None

Save chain to a JSON file.

Parameters:

  • path

    Path to save the file. This supports local paths as well as remote paths, such as s3:// or hf:// with fsspec.

  • fs_kwargs

    Optional kwargs to pass to the fsspec filesystem, used only for write, for fsspec-type URLs, such as s3:// or hf:// when provided as the destination path.

  • include_outer_list

    Sets whether to include an outer list for all rows. Setting this to True makes the file valid JSON, while False instead writes in the JSON lines format.

Source code in datachain/lib/dc.py
def to_json(
    self,
    path: Union[str, os.PathLike[str]],
    fs_kwargs: Optional[dict[str, Any]] = None,
    include_outer_list: bool = True,
) -> None:
    """Save chain to a JSON file.

    Parameters:
        path : Path to save the file. This supports local paths as well as
            remote paths, such as s3:// or hf:// with fsspec.
        fs_kwargs : Optional kwargs to pass to the fsspec filesystem, used only for
            write, for fsspec-type URLs, such as s3:// or hf:// when
            provided as the destination path.
        include_outer_list : Sets whether to include an outer list for all rows.
            Setting this to True makes the file valid JSON, while False instead
            writes in the JSON lines format.
    """
    opener = open

    if isinstance(path, str) and "://" in path:
        from datachain.client.fsspec import Client

        fs_kwargs = {
            **self._query.catalog.client_config,
            **(fs_kwargs or {}),
        }

        client = Client.get_implementation(path)

        fsspec_fs = client.create_fs(**fs_kwargs)

        opener = fsspec_fs.open

    headers, _ = self._effective_signals_schema.get_headers_with_length()
    headers = [list(filter(None, header)) for header in headers]

    is_first = True

    with opener(path, "wb") as f:
        if include_outer_list:
            # This makes the file JSON instead of JSON lines.
            f.write(b"[\n")
        for row in self.collect_flatten():
            if not is_first:
                if include_outer_list:
                    # This makes the file JSON instead of JSON lines.
                    f.write(b",\n")
                else:
                    f.write(b"\n")
            else:
                is_first = False
            f.write(orjson.dumps(row_to_nested_dict(headers, row)))
        if include_outer_list:
            # This makes the file JSON instead of JSON lines.
            f.write(b"\n]\n")

to_jsonl

to_jsonl(
    path: Union[str, PathLike[str]],
    fs_kwargs: Optional[dict[str, Any]] = None,
) -> None

Save chain to a JSON lines file.

Parameters:

  • path

    Path to save the file. This supports local paths as well as remote paths, such as s3:// or hf:// with fsspec.

  • fs_kwargs

    Optional kwargs to pass to the fsspec filesystem, used only for write, for fsspec-type URLs, such as s3:// or hf:// when provided as the destination path.

Source code in datachain/lib/dc.py
def to_jsonl(
    self,
    path: Union[str, os.PathLike[str]],
    fs_kwargs: Optional[dict[str, Any]] = None,
) -> None:
    """Save chain to a JSON lines file.

    Parameters:
        path : Path to save the file. This supports local paths as well as
            remote paths, such as s3:// or hf:// with fsspec.
        fs_kwargs : Optional kwargs to pass to the fsspec filesystem, used only for
            write, for fsspec-type URLs, such as s3:// or hf:// when
            provided as the destination path.
    """
    self.to_json(path, fs_kwargs, include_outer_list=False)

to_pandas

to_pandas(flatten=False) -> DataFrame

Return a pandas DataFrame from the chain.

Parameters:

  • flatten

    Whether to use a multiindex or flatten column names.

Source code in datachain/lib/dc.py
def to_pandas(self, flatten=False) -> "pd.DataFrame":
    """Return a pandas DataFrame from the chain.

    Parameters:
        flatten : Whether to use a multiindex or flatten column names.
    """
    import pandas as pd

    headers, max_length = self._effective_signals_schema.get_headers_with_length()
    if flatten or max_length < 2:
        columns = [".".join(filter(None, header)) for header in headers]
    else:
        columns = pd.MultiIndex.from_tuples(map(tuple, headers))

    return pd.DataFrame.from_records(self.results(), columns=columns)

to_parquet

to_parquet(
    path: Union[str, PathLike[str], BinaryIO],
    partition_cols: Optional[Sequence[str]] = None,
    chunk_size: int = DEFAULT_PARQUET_CHUNK_SIZE,
    fs_kwargs: Optional[dict[str, Any]] = None,
    **kwargs
) -> None

Save chain to parquet file with SignalSchema metadata.

Parameters:

  • path

    Path or a file-like binary object to save the file. This supports local paths as well as remote paths, such as s3:// or hf:// with fsspec.

  • partition_cols

    Column names by which to partition the dataset.

  • chunk_size

    The chunk size of results to read and convert to columnar data, to avoid running out of memory.

  • fs_kwargs

    Optional kwargs to pass to the fsspec filesystem, used only for write, for fsspec-type URLs, such as s3:// or hf:// when provided as the destination path.

Source code in datachain/lib/dc.py
def to_parquet(
    self,
    path: Union[str, os.PathLike[str], BinaryIO],
    partition_cols: Optional[Sequence[str]] = None,
    chunk_size: int = DEFAULT_PARQUET_CHUNK_SIZE,
    fs_kwargs: Optional[dict[str, Any]] = None,
    **kwargs,
) -> None:
    """Save chain to parquet file with SignalSchema metadata.

    Parameters:
        path : Path or a file-like binary object to save the file. This supports
            local paths as well as remote paths, such as s3:// or hf:// with fsspec.
        partition_cols : Column names by which to partition the dataset.
        chunk_size : The chunk size of results to read and convert to columnar
            data, to avoid running out of memory.
        fs_kwargs : Optional kwargs to pass to the fsspec filesystem, used only for
            write, for fsspec-type URLs, such as s3:// or hf:// when
            provided as the destination path.
    """
    import pyarrow as pa
    import pyarrow.parquet as pq

    from datachain.lib.arrow import DATACHAIN_SIGNAL_SCHEMA_PARQUET_KEY

    fsspec_fs = None

    if isinstance(path, str) and "://" in path:
        from datachain.client.fsspec import Client

        fs_kwargs = {
            **self._query.catalog.client_config,
            **(fs_kwargs or {}),
        }

        client = Client.get_implementation(path)

        if path.startswith("file://"):
            # pyarrow does not handle file:// uris, and needs a direct path instead.
            from urllib.parse import urlparse

            path = urlparse(path).path
            if sys.platform == "win32":
                path = os.path.normpath(path.lstrip("/"))

        fsspec_fs = client.create_fs(**fs_kwargs)

    _partition_cols = list(partition_cols) if partition_cols else None
    signal_schema_metadata = orjson.dumps(
        self._effective_signals_schema.serialize()
    )

    column_names, column_chunks = self.to_columnar_data_with_names(chunk_size)

    parquet_schema = None
    parquet_writer = None
    first_chunk = True

    for chunk in column_chunks:
        # pyarrow infers the best parquet schema from the python types of
        # the input data.
        table = pa.Table.from_pydict(
            dict(zip(column_names, chunk)),
            schema=parquet_schema,
        )

        # Preserve any existing metadata, and add the DataChain SignalSchema.
        existing_metadata = table.schema.metadata or {}
        merged_metadata = {
            **existing_metadata,
            DATACHAIN_SIGNAL_SCHEMA_PARQUET_KEY: signal_schema_metadata,
        }
        table = table.replace_schema_metadata(merged_metadata)
        parquet_schema = table.schema

        if _partition_cols:
            # Write to a partitioned parquet dataset.
            pq.write_to_dataset(
                table,
                root_path=path,
                partition_cols=_partition_cols,
                filesystem=fsspec_fs,
                **kwargs,
            )
        else:
            if first_chunk:
                # Write to a single parquet file.
                parquet_writer = pq.ParquetWriter(
                    path, parquet_schema, filesystem=fsspec_fs, **kwargs
                )
                first_chunk = False

            assert parquet_writer
            parquet_writer.write_table(table)

    if parquet_writer:
        parquet_writer.close()

to_pytorch

to_pytorch(
    transform=None,
    tokenizer=None,
    tokenizer_kwargs=None,
    num_samples=0,
    remove_prefetched: bool = False,
)

Convert to pytorch dataset format.

Parameters:

  • transform (Transform, default: None ) –

    Torchvision transforms to apply to the dataset.

  • tokenizer (Callable, default: None ) –

    Tokenizer to use to tokenize text values.

  • tokenizer_kwargs (dict, default: None ) –

    Additional kwargs to pass when calling tokenizer.

  • num_samples (int, default: 0 ) –

    Number of random samples to draw for each epoch. This argument is ignored if num_samples=0 (the default).

  • remove_prefetched (bool, default: False ) –

    Whether to remove prefetched files after reading.

Example
from torch.utils.data import DataLoader
loader = DataLoader(
    chain.select("file", "label").to_pytorch(),
    batch_size=16
)
Source code in datachain/lib/dc.py
def to_pytorch(
    self,
    transform=None,
    tokenizer=None,
    tokenizer_kwargs=None,
    num_samples=0,
    remove_prefetched: bool = False,
):
    """Convert to pytorch dataset format.

    Args:
        transform (Transform): Torchvision transforms to apply to the dataset.
        tokenizer (Callable): Tokenizer to use to tokenize text values.
        tokenizer_kwargs (dict): Additional kwargs to pass when calling tokenizer.
        num_samples (int): Number of random samples to draw for each epoch.
            This argument is ignored if `num_samples=0` (the default).
        remove_prefetched (bool): Whether to remove prefetched files after reading.

    Example:
        ```py
        from torch.utils.data import DataLoader
        loader = DataLoader(
            chain.select("file", "label").to_pytorch(),
            batch_size=16
        )
        ```
    """
    from datachain.torch import PytorchDataset

    if self._query.attached:
        chain = self
    else:
        chain = self.save()
    assert chain.name is not None  # for mypy
    return PytorchDataset(
        chain.name,
        chain.version,
        catalog=self.session.catalog,
        transform=transform,
        tokenizer=tokenizer,
        tokenizer_kwargs=tokenizer_kwargs,
        num_samples=num_samples,
        dc_settings=chain._settings,
        remove_prefetched=remove_prefetched,
    )

to_records

to_records() -> list[dict[str, Any]]

Convert every row to a dictionary.

Source code in datachain/lib/dc.py
def to_records(self) -> list[dict[str, Any]]:
    """Convert every row to a dictionary."""

    def to_dict(cols: list[str], row: tuple[Any, ...]) -> dict[str, Any]:
        return dict(zip(cols, row))

    return self.results(row_factory=to_dict)

union

union(other: Self) -> Self

Return the set union of the two datasets.

Parameters:

  • other (Self) –

    chain whose rows will be added to self.

Source code in datachain/lib/dc.py
def union(self, other: "Self") -> "Self":
    """Return the set union of the two datasets.

    Parameters:
        other: chain whose rows will be added to `self`.
    """
    return self._evolve(query=self._query.union(other._query))

DataChainError

DataChainError(message)

Bases: Exception

Source code in datachain/lib/utils.py
def __init__(self, message):
    super().__init__(message)

Session

Session(
    name="",
    catalog: Optional[Catalog] = None,
    client_config: Optional[dict] = None,
    in_memory: bool = False,
)

Session is a context that keeps track of temporary DataChain datasets for a proper cleanup. By default, a global session is created.

Temporary or ephemeral datasets are the ones created without specified name. They are useful for optimization purposes and should be automatically removed.

Temp dataset has specific name format

"session_"

The suffix is optional. Both s are auto-generated.

Temp dataset examples

session_myname_624b41_48e8b4 session_4b962d_2a5dff

Parameters:

name (str): The name of the session. Only latters and numbers are supported. It can be empty. catalog (Catalog): Catalog object.

Source code in datachain/query/session.py
def __init__(
    self,
    name="",
    catalog: Optional["Catalog"] = None,
    client_config: Optional[dict] = None,
    in_memory: bool = False,
):
    if re.match(r"^[0-9a-zA-Z]*$", name) is None:
        raise ValueError(
            f"Session name can contain only letters or numbers - '{name}' given."
        )

    if not name:
        name = self.GLOBAL_SESSION_NAME

    session_uuid = uuid4().hex[: self.SESSION_UUID_LEN]
    self.name = f"{name}_{session_uuid}"
    self.is_new_catalog = not catalog
    self.catalog = catalog or get_catalog(
        client_config=client_config, in_memory=in_memory
    )
    self.dataset_versions: list[tuple[DatasetRecord, int, bool]] = []

get classmethod

get(
    session: Optional[Session] = None,
    catalog: Optional[Catalog] = None,
    client_config: Optional[dict] = None,
    in_memory: bool = False,
) -> Session

Creates a Session() object from a catalog.

Parameters:

  • session (Session, default: None ) –

    Optional Session(). If not provided a new session will be created. It's needed mostly for simple API purposes.

  • catalog (Catalog, default: None ) –

    Optional catalog. By default, a new catalog is created.

Source code in datachain/query/session.py
@classmethod
def get(
    cls,
    session: Optional["Session"] = None,
    catalog: Optional["Catalog"] = None,
    client_config: Optional[dict] = None,
    in_memory: bool = False,
) -> "Session":
    """Creates a Session() object from a catalog.

    Parameters:
        session (Session): Optional Session(). If not provided a new session will
                be created. It's needed mostly for simple API purposes.
        catalog (Catalog): Optional catalog. By default, a new catalog is created.
    """
    if session:
        return session

    # Access the active (most recent) context from the stack
    if cls.SESSION_CONTEXTS:
        return cls.SESSION_CONTEXTS[-1]

    if cls.GLOBAL_SESSION_CTX is None:
        cls.GLOBAL_SESSION_CTX = Session(
            cls.GLOBAL_SESSION_NAME,
            catalog,
            client_config=client_config,
            in_memory=in_memory,
        )

        atexit.register(cls._global_cleanup)
        cls.ORIGINAL_EXCEPT_HOOK = sys.excepthook
        sys.excepthook = cls.except_hook

    return cls.GLOBAL_SESSION_CTX

Sys

Bases: DataModel

Model for internal DataChain signals id and rand.